|  | 
 
| 
Abstract
×
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册  
 
 Thanks to its ability to generate a stable yet programmable output frequency, Phase Locked
 Loop (PLL) frequency synthesizers are found in most modern radio transceivers. All practical
 PLL implementations suffer from unwanted frequency components such as phasenoise
 and spurious tones, and since these components affect system performance they
 must be predicted and minimized.
 This thesis discuss the design and implementation of fully integrated PLL circuits. Techniques
 to predict system performance are investigated. The strongly non-linear operation
 of PLL building blocks are analyzed, using both analytical and numerical methods.
 Techniques to reduce impact of interferer down-conversion and noise folding are suggested.
 Methods to perform automatic calibration in order to make circuits less sensitive
 to process variations are proposed. The techniques are verified through a number of PLL
 implementations.
 The design and implementation of a transceiver targeting a dual band IEEE 802.11 a/b/g
 wireless LAN operation is discussed. The circuit use two PLL:s operating at 1310 to 1510
 MHz and 3.84 GHz respectively. Noise contributions of various PLL building blocks and
 their impact on over all system performance are analyzed. The combined integrated phase
 noise is below -34 dBc, and measured transceiver Error Vector Magnitude (EVM) is better
 than 2.5 dB in both the 2.4 and 5 GHz bands.
 A low power frequency synthesizer targeting Frequency Shift Keying applications such
 as ZigBee and BlueTooth is presented. The synthesizer use open-loop direct modulation
 of the carrier, but unlike conventional implementations, the proposed synthesizer is open
 both when transmitting and receiving data. This allows the use of a small area on-chip
 loop filter without violating noise or spurious requirements. To handle the frequency
 drift normally associated with open-loop implementations, a low-leakage charge-pump is
 proposed. The synthesizer is implemented using a 0.18μm CMOS process. Total power
 consumption is 9 mW and the circuit area including the VCO inductors and on-chip loopfilter
 is 0.32mm2. Measured leakage current is less than 2 fA.
 A small area amplitude detector circuit is proposed. The wide-band operation and small
 input capacitance make the circuit suitable for embedding in an RF system on-chip, allowing
 measurement of on-chip signal levels and automatic calibration.
 
 
 Finally an oscillator topology reducing the phase noise in voltage controlled oscillators
 is suggested. By using on-chip decoupling and an amplitude control circuit to adjust
 oscillator bias, the impact of current source noise is eliminated. The theoretical phase
 noise is reduced 3.9 dB compared to a conventional LC oscillator using the same bias
 current.
 
 
 
 
 Contents
 Abstract iii
 Acknowledgments v
 List of appended papers xi
 Related work not included xiii
 Summary of appended papers xv
 1 Introduction 1
 1.1 PLL operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 1.2 Transceiver overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
 2 PLL performance parameters 13
 2.1 Frequency range and accuracy . . . . . . . . . . . . . . . . . . . . . . . 14
 2.2 Settling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 2.3 Spurious tones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 2.4 Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 2.5 Phase noise impact on system performance . . . . . . . . . . . . . . . . 25
 2.6 Phase noise in OFDM system . . . . . . . . . . . . . . . . . . . . . . . . 27
 2.7 Amplitude and phase matching . . . . . . . . . . . . . . . . . . . . . . . 32
 2.8 Other PLL design considerations . . . . . . . . . . . . . . . . . . . . . . 33
 
 
 
 3 PLL modeling and simulation 37
 3.1 PLL type and order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
 3.2 Linear models of PLL building blocks . . . . . . . . . . . . . . . . . . . 40
 3.3 Linear PLL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
 3.4 Discrete time PLL model . . . . . . . . . . . . . . . . . . . . . . . . . . 48
 3.5 Numerical PLL models . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
 3.6 Mixed-signal PLL model . . . . . . . . . . . . . . . . . . . . . . . . . . 50
 3.7 Simulating PLL performance . . . . . . . . . . . . . . . . . . . . . . . . 54
 4 PLL noise analysis 59
 4.1 Noise in digital circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
 4.2 Phase Frequency Detector . . . . . . . . . . . . . . . . . . . . . . . . . 62
 4.3 Folding of noise and interferers in Charge-Pump . . . . . . . . . . . . . . 64
 4.4 Oscillator phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
 4.5 Reference oscillator noise . . . . . . . . . . . . . . . . . . . . . . . . . . 73
 4.6 Noise in DS noise shaper . . . . . . . . . . . . . . . . . . . . . . . . . . 74
 4.7 Linear PLL noise model . . . . . . . . . . . . . . . . . . . . . . . . . . 75
 4.8 Simulating PLL noise using circuit simulator . . . . . . . . . . . . . . . 76
 4.9 Discrete time and numerical noise simulation . . . . . . . . . . . . . . . 80
 4.10 PLL noise optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
 5 Oscillators 89
 5.1 Oscillator principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 5.2 CMOS LC-VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
 5.3 Pulse wave LC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 107
 5.4 Comparison LC and pulse wave VCO . . . . . . . . . . . . . . . . . . . 118
 6 Conclusion 121
 References 123
 A Calculation of loop-filter components 133
 A.1 Calculation of frequency of pole and zero . . . . . . . . . . . . . . . . . 135
 A.2 Calculation of component values . . . . . . . . . . . . . . . . . . . . . . 136
 B Behavioral models 139
 B.1 VCO behavioral model . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
 B.2 Divider behavioral model . . . . . . . . . . . . . . . . . . . . . . . . . . 140
 | 
 |