|  | 
 
| 
本帖最后由 hi_china59 于 2011-4-21 15:27 编辑
×
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册  
 Low Power Filtering Techniques for wideband and wireless applications
 
 A Dissertation
 by
 MANISHA GAMBHIR
 Submitted to the Office of Graduate Studies of
 Texas A&M University
 in partial fulfillment of the requirements for the degree of
 DOCTOR OF PHILOSOPHY
 August 2009
 Major Subject: Electrical Engineering
 LOW POWER FILTERING TECHNIQUES FOR WIDEBAND AND WIRELESS
 APPLICATIONS
 A Dissertation
 by
 MANISHA GAMBHIR
 Submitted to the Office of Graduate Studies of
 Texas A&M University
 in partial fulfillment of the requirements for the degree of
 DOCTOR OF PHILOSOPHY
 Approved by:
 Co-Chairs of Committee, Edgar Sanchez-Sinencio
 Jose Silva-Martinez
 Committee Members, Shankar P. Bhattacharyya
 Alexander G. Parlos
 Head of Department, Costas N. Georghiades
 August 2009
 Major Subject: Electrical Engineering
 iii
 ABSTRACT
 Low Power Filtering Techniques for Wideband and Wireless Applications.
 (August 2009)
 Manisha Gambhir, B.E., Delhi University, India;
 M.S., Texas A&M University, College Station
 Co-Chairs of Advisory Committee: Dr. Edgar Sanchez-Sinencio
 Dr. Jose Silva-Martinez
 This dissertation presents design and implementation of continuous time analog
 filters for two specific applications: wideband analog systems such as disk drive channel
 and low-power wireless applications. Specific focus has been techniques that reduce the
 power requirements of the overall system either through improvement in architecture or
 efficiency of the analog building blocks.
 The first problem that this dissertation addresses is the implementation of
 wideband filters with high equalization gain. An efficient architecture that realizes
 equalization zeros by combining available transfer functions associated with a
 biquadratic cell is proposed. A 330MHz, 5th order Gm-C lowpass Butterworth filter with
 24dB boost is designed using the proposed architecture. The prototype fabricated in
 standard 0.35μm CMOS process shows -41dB of IM3 for 250mV peak to peak swing
 with 8.6mW/pole of power dissipation. Also, an LC prototype implemented using
 similar architecture is discussed in brief. It is shown that, for practical range of
 iv
 frequency and SNR, LC based design is more power efficient than a Gm-C one, though
 at the cost of much larger area.
 Secondly, a complementary current mirror based building block is proposed,
 which pushes the limits imposed by conventional transconductors on the powerefficiency
 of Gm-C filters. Signal processing through complementary devices provides
 good linearity and Gm/Id efficiency and is shown to improve power efficiency by nearly
 7 times. A current-mode 4th order Butterworth filter is designed, in 0.13μm UMC
 technology, using the proposed building. It provides 54.2dB IM3 and 55dB SNR in
 1.3GHz bandwidth while consuming as low as 24mW of power. All CMOS filter
 realization occupies a relatively small area and is well suited for integration in deep
 submicron technologies.
 Thirdly, a 20MHz, 68dB dynamic range active RC filter is presented. This filter
 is designed for a ten bit continuous time sigma delta ADC architecture developed
 specifically for fine-line CMOS technologies. Inverter based amplification and a
 common mode feedback for such amplifiers are discussed. The filter consumes 5mW of
 power and occupies an area of 0.07 mm2.
 
 TABLE OF CONTENTS
 Page
 ABSTRACT......................................................................................................................iii
 DEDICATION...................................................................................................................iv
 ACKNOWLEDGEMENTS................................................................................................v
 TABLE OF CONTENTS..................................................................................................vi
 LIST OF FIGURES.........................................................................................................viii
 LIST OF TABLES...........................................................................................................xii
 1. INTRODUCTION........................................................................................................1
 1.1. Motivation.............................................................................................................1
 1.2. Overview of analog filters.....................................................................................3
 1.2.1. Discrete-time filters....................................................................................4
 1.2.2. Continuous-time filters...............................................................................5
 1.3. Overview of analog-to-digital converter architectures.........................................6
 1.4. Organization of the thesis.....................................................................................7
 2. PROPERTIES OF THE SIGMA-DELTA MODULATOR.........................................9
 2.1. Analog-to-digital conversion............................................................................... 9
 2.2. Ideal sigma-delta modulator...............................................................................11
 2.3. Continuous-time and discrete-time sigma-delta modulators..............................13
 2.4. Non-idealities in continuous-time sigma-delta modulators................................16
 2.4.1. Circuit noise..............................................................................................16
 2.4.2. Non-linearity.............................................................................................17
 2.4.3. Component mismatches............................................................................18
 2.4.4. Excess loop delay.....................................................................................18
 2.4.5. Clock jitter................................................................................................19
 2.5. Performance parameters of sigma-delta modulators..........................................21
 2.5.1. Signal-to-noise-and-distortion ratio (SNDR)...........................................21
 2.5.2. Dynamic range (DR).................................................................................21
 3. DESIGN OF CONTINUOUS-TIME SIGMA-DELTA MODULATOR...................22
 3.1. Introduction........................................................................................................22
 3.2. Loop filter transfer function...............................................................................23
 3.3. Modulator loop topology....................................................................................25
 3.4. Overview of system implementation..................................................................27
 3.5. Behavioral simulations of the system.................................................................29
 4. DESIGN OF Gm-C BIQUADRATIC FILTER..........................................................31
 vii
 Page
 4.1. Gm-C integrator...................................................................................................31
 4.2. OTA architecture................................................................................................33
 4.2.1. Noise analysis of Gm-C-OTA integrator...................................................35
 4.2.2. Linearity analysis of Gm-C-OTA..............................................................37
 4.2.3. OTA simulation results.............................................................................38
 4.3. The Gm-C biquadratic cell..................................................................................41
 4.3.1. Linearity analysis of the Gm-C biquad......................................................42
 4.3.2. Noise analysis of the Gm-C biquad...........................................................50
 4.4. Biquad simulation results...................................................................................52
 5. DESIGN OF A 5TH ORDER ACTIVE-RC LOW-PASS FILTER.............................56
 5.1. Introduction........................................................................................................56
 5.1.1. Architectural considerations.....................................................................57
 5.1.2. Design considerations...............................................................................58
 5.2. Design of amplifier..............................................................................................59
 5.2.1. Amplifier architecture...............................................................................60
 5.2.2. Amplifier circuit implementation.............................................................62
 5.2.3. Simulation results of the amplifier...........................................................64
 5.3. Second order filter realization.............................................................................68
 5.3.1. Design considerations...............................................................................68
 5.4. First-order integrator stage..................................................................................74
 5.5. Summing amplifier..............................................................................................76
 5.5.1. Stability considerations.............................................................................77
 5.5.2. Summing amplifier design requirements..................................................79
 5.5.3. Optimizing for group delay......................................................................83
 5.5.4. Circuit implementation of summing amplifier.........................................88
 5.5.5. Summing amplifier simulation results......................................................90
 6. RESULTS...................................................................................................................92
 6.1. Preliminary experimental results of CT LP ΣΔ ADC.........................................92
 6.2. Simulation results for the 5th order low-pass filter..............................................95
 6.2.1. Simulation results for first stage of filter.................................................96
 6.2.2. Simulation results for second stage of filter..........................................100
 6.2.3. Simulation results for third stage of filter..............................................102
 7. SUMMARY AND CONCLUSIONS.......................................................................104
 REFERENCES...............................................................................................................106
 VITA..............................................................................................................................109
 | 
 
    
    
        
        
            
              
        
             
            
                
                lp.rar
                
             3.28 MB, 下载次数: 148
                , 下载积分:
                资产 -2 信元, 下载支出 2 信元 
                
             |