|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
目录:
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Radio Transmission 5
2.1 Systems and Standards . . . . . . . . . . . . . . . . . 5
2.2 Radio Transmitter Requirements . . . . . . . . . . . . 7
2.2.1 Output power and power range . . . . . . . . . 7
2.2.2 Occupied bandwidth and adjacent channel power
leakage (ACLR) . . . . . . . . . . . . . . . . . 10
2.2.3 Constellation pattern and error vector magnitude (EVM) . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Out-of-band emissions and dynamic range of
transmitted signal . . . . . . . . . . . . . . . . 11
2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . 15
2.3 Ideal transmitter directions . . . . . . . . . . . . . . . 15
2.3.1 Complete transmitter model . . . . . . . . . . . 15
2.3.2 Abstract model of ideal transmitter . . . . . . 19
2.3.3 Amplitude-Domain-Loop (ADL) distortion . . 23
2.3.4 Phase-Domain-Loop (PDL) distortion . . . . . 24
2.3.5 Baseband noise v.s. linearity . . . . . . . . . . 28
2.3.6 RF noise v.s. linearity . . . . . . . . . . . . . . 31
2.4 Signal representations and conceptual TX architectures 32
2.5 Conclusions and perspective . . . . . . . . . . . . . . . 37
3 Radio Transmitter Architecture 39
3.1 Cartesian (I/Q) transmitter . . . . . . . . . . . . . . . 39
3.1.1 Direct up-conversion (DUC) . . . . . . . . . . . 40
3.1.2 Digital-to-RF conversion (DRFC) . . . . . . . . 41
3.1.3 PA eciency with high PAR signals . . . . . . 44
3.1.4 PA eciency at power backo . . . . . . . . . . 46
3.1.5 Cartesian transmitter perspective . . . . . . . . 47
3.2 Polar Transmitter . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Large Signal, closed loop polar TX . . . . . . . 48
3.2.2 Small Signal, open loop polar TX . . . . . . . . 48
3.3 PLL for phase modulation . . . . . . . . . . . . . . . . 50
3.4 Conclusions and Directions . . . . . . . . . . . . . . . 52
4 Dynamic range in I/Q Transmitter 53
4.1 Transmitter Overview . . . . . . . . . . . . . . . . . . 54
4.1.1 Architecture Overview . . . . . . . . . . . . . . 54
4.1.2 Output power and distortion . . . . . . . . . . 54
4.1.3 Dominant noise sources and distortion . . . . . 55
4.1.4 Perspective . . . . . . . . . . . . . . . . . . . . 59
4.2 Mixer driver . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Fundamental limits on transconductor SNR . . 59
4.2.2 Noise from the baseband lter . . . . . . . . . 61
4.2.3 Mixer driver topology . . . . . . . . . . . . . . 62
4.3 Noise and distortion within a feedback loop . . . . . . 64
4.3.1 Noise sources and SNR . . . . . . . . . . . . . 64
4.3.2 Loop distortion and SNR loss . . . . . . . . . . 66
4.3.3 (SNR/Power) loss and discussion . . . . . . . . 68
4.4 Noise and distortion with open loop mirroring . . . . . 72
4.4.1 Filtering a predistorted signal . . . . . . . . . . 72
4.4.2 Finite output impedance . . . . . . . . . . . . . 76
4.4.3 Device nonlinearity and load imbalance . . . . 77
4.4.4 (SNR/Power) loss and discussion . . . . . . . . 81
4.5 Feedback Regulation . . . . . . . . . . . . . . . . . . . 82
4.6 A linear, low noise mixer driver . . . . . . . . . . . . . 85
4.6.1 System model . . . . . . . . . . . . . . . . . . . 85
4.6.2 Harmonic distortion . . . . . . . . . . . . . . . 88
4.6.3 Low Noise, low HD design . . . . . . . . . . . . 90
4.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . 94
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 95
5 Linear Up-conversion 97
5.1 Current mode mixer . . . . . . . . . . . . . . . . . . . 97
5.2 Power ecient mixer . . . . . . . . . . . . . . . . . . . 99
5.3 Switching pair distortion . . . . . . . . . . . . . . . . . 100
5.3.1 Static overlap distortion (SOD) . . . . . . . . . 100
5.3.2 Dynamic switching distortion (DSD) . . . . . . 102
5.4 Current Quenching . . . . . . . . . . . . . . . . . . . . 108
5.4.1 Quenching and static overlap distortion (SOD) 108
5.4.2 Quenching and dynamic switching distortion (DSD)109
5.4.3 DSD improvement with an inductor . . . . . . 114
5.5 Current quenching, SNR and IMR . . . . . . . . . . . 117
5.6 I/Q modulator overview . . . . . . . . . . . . . . . . . 120
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 122
6 A Complete Transmitter 123
6.1 Transmitter Overview . . . . . . . . . . . . . . . . . . 123
6.2 Mixer driver design . . . . . . . . . . . . . . . . . . . . 124
6.2.1 Main loop design considerations . . . . . . . . 125
6.2.2 Loop dynamics . . . . . . . . . . . . . . . . . . 127
6.2.3 Common mode loop design . . . . . . . . . . . 132
6.2.4 Feedback regulation . . . . . . . . . . . . . . . 135
6.3 Quenching pulse generation . . . . . . . . . . . . . . . 137
6.4 Measured Transmitter Performance . . . . . . . . . . . 141
6.4.1 Mixer driver . . . . . . . . . . . . . . . . . . . 142
6.4.2 Switching pair . . . . . . . . . . . . . . . . . . 144
6.4.3 Measured noise and power consumption . . . . 148
6.4.4 Measured performance Summary . . . . . . . . 149
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 151
7 Conclusions 153
A Nonlinear distortion 157
A.1 Introduction to Volterra series . . . . . . . . . . . . . . 157
A.2 HD3 in feedback ampliers . . . . . . . . . . . . . . . 159
A.3 Nonlinear distortion from linear lter . . . . . . . . . . 161
A.4 Distortion from load imbalance . . . . . . . . . . . . . 163
A.5 Switching pair harmonic distortion . . . . . . . . . . . 165
A.5.1 Static overlap distortion (SOD) . . . . . . . . . 165
A.5.2 Dynamic switching distortion (DSD) . . . . . . 166
B Feedback regulation and loop stability 169
Curriculum Vitae 179
A Power effcient Linear Multi-Mode CMOS Radio.pdf
(3.91 MB, 下载次数: 371 )
|
|