在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
楼主: benemale

(11月30日增加12本)★好书大放送——Springer丛书系列★EE,CS & DSP★

[复制链接]
发表于 2011-4-3 13:13:00 | 显示全部楼层
仿真越准确,仿真所需时间越长
发表于 2011-4-8 14:28:38 | 显示全部楼层
好书,谢谢,非常,
发表于 2011-4-17 06:15:52 | 显示全部楼层
Finding the book, "Routing Congestion in VLSI Circuits: Estimation and Optimization".
发表于 2011-4-17 06:18:09 | 显示全部楼层
Routing Congestion in VLSI Circuits -- Estimation and Optimization
Contents:
=======================================================
Part I THE ORIGINS OF CONGESTION
1 AN INTRODUCTION TO ROUTING CONGESTION . . . . 3
1.1 The Nature of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Basic Routing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Routing Congestion Terminology . . . . . . . . . . . . . . . . . . . . 9
1.2 The Undesirability of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Impact on Circuit Performance . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Impact on Design Convergence . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Impact on Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 The Scaling of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Effect of Design Complexity Scaling . . . . . . . . . . . . . . . . . 20
1.3.2 Effect of Process Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 The Estimation of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 The Optimization of Congestion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Part II THE ESTIMATION OF CONGESTION
2 PLACEMENT-LEVEL METRICS FOR ROUTING
CONGESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Fast Metrics For Routing Congestion . . . . . . . . . . . . . . . . . . . . . . 34
2.1.1 Total Wirelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.2 Pin Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3 Perimeter Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.4 Application of Rent’s Rule to Congestion Metrics . . . . . . 38
2.2 Probabilistic Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Intra-bin Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Flat Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Single and Double Bend Routes for Inter-bin Nets . . . . . 45
2.2.4 Multibend Routes for Inter-bin Nets . . . . . . . . . . . . . . . . . 48
2.2.5 Routing Blockage Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.6 Complexity of Probabilistic Methods . . . . . . . . . . . . . . . . . 52
2.2.7 Approximations Inherent in Probabilistic Methods . . . . . 54
2.3 Estimation based on Fast Global Routing. . . . . . . . . . . . . . . . . . . 56
2.3.1 Search Space Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 Fast Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4 Comparison of Fast Global Routing with Probabilistic Methods 63
2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3 SYNTHESIS-LEVEL METRICS FOR ROUTING
CONGESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Congestion Metrics for Technology Mapping . . . . . . . . . . . . . . . . 70
3.2.1 Total Netlength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Mutual Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.3 Predictive Congestion Maps . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Constructive Congestion Maps . . . . . . . . . . . . . . . . . . . . . . 79
3.2.5 Comparison of Congestion Metrics for Technology
Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3 Routing Congestion Metrics for Logic Synthesis . . . . . . . . . . . . . 83
3.3.1 Literal Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.2 Adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3 Fanout and Net Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.4 Neighborhood Population . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.5 Other Structural Metrics for Netlength Prediction . . . . . 89
3.3.6 Comparison of Congestion Metrics for Logic Synthesis . 91
3.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
发表于 2011-4-17 06:20:37 | 显示全部楼层
(be continued)
Contents:
===========================================================
Part III THE OPTIMIZATION OF CONGESTION
4 CONGESTION OPTIMIZATION DURING
INTERCONNECT SYNTHESIS AND ROUTING . . . . . . . . 97
4.1 Congestion Management during Global Routing . . . . . . . . . . . . . 98
4.1.1 Sequential Global Routing . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.2 Rip-up and Reroute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.3 Hierarchical and Multilevel Routing . . . . . . . . . . . . . . . . . 105
4.1.4 Multicommodity Flow based Routing . . . . . . . . . . . . . . . . 108
4.1.5 Routing using Simulated Annealing . . . . . . . . . . . . . . . . . . 110
4.1.6 Routing using Iterative Deletion . . . . . . . . . . . . . . . . . . . . . 111
4.2 Congestion Management during Detailed Routing . . . . . . . . . . . 112
4.3 Congestion-aware Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.1 Routability-aware Buffer Block Planning . . . . . . . . . . . . . 116
4.3.2 Holistic Buffered Tree Synthesis within a Physical
Layout Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4 Congestion Implications of Power Grid Design . . . . . . . . . . . . . . 130
4.4.1 Integrated Power Network and Signal Shield Design . . . 130
4.4.2 Signal and Power Network Codesign . . . . . . . . . . . . . . . . . 132
4.5 Congestion-aware Interconnect Noise Management . . . . . . . . . . . 136
4.5.1 Congestion-aware Shield Synthesis for RLC Noise . . . . . 137
4.5.2 Integrated Congestion-aware Shielding and Buffering . . . 138
4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5 CONGESTION OPTIMIZATION DURING PLACEMENT145
5.1 A Placement Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.1.1 Analytical Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.2 Top-down Partitioning-based Placement . . . . . . . . . . . . . . 150
5.1.3 Multilevel Placement Methods . . . . . . . . . . . . . . . . . . . . . . 151
5.1.4 Move-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Congestion-aware Post-processing of Placement . . . . . . . . . . . . . 152
5.2.1 Find-and-fix Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.2 Congestion-aware Placement Refinement . . . . . . . . . . . . . 157
5.2.3 White Space Management Techniques . . . . . . . . . . . . . . . . 162
5.3 Interleaved Congestion Management and Placement. . . . . . . . . . 168
5.3.1 Interleaved Placement and Global Routing . . . . . . . . . . . 169
5.3.2 Interleaved Update of Control Parameters in
Congestion-aware Placement . . . . . . . . . . . . . . . . . . . . . . . . 174
5.4 Explicit Congestion Management within Placement . . . . . . . . . . 174
5.4.1 Cell Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.4.2 White Space Management Techniques . . . . . . . . . . . . . . . . 180
5.4.3 Congestion-aware Objective Function or Concurrent
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6 CONGESTION OPTIMIZATION DURING
TECHNOLOGY MAPPING AND LOGIC SYNTHESIS . . 189
6.1 Overview of Classical Technology Mapping . . . . . . . . . . . . . . . . . 190
6.1.1 Mapping for Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.1.2 Mapping for Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.1.3 Tree and DAG Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.2 Congestion-aware Technology Mapping . . . . . . . . . . . . . . . . . . . . . 197
6.2.1 Technology Mapping using Netlength . . . . . . . . . . . . . . . . 199
6.2.2 Technology Mapping using Mutual Contraction . . . . . . . 203
6.2.3 Technology Mapping using Predictive Congestion Maps 205
6.2.4 Technology Mapping using Constructive Congestion
Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.2.5 Comparison Of Congestion-aware Technology
Mapping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.3 Overview of Classical Logic Synthesis . . . . . . . . . . . . . . . . . . . . . . 214
6.3.1 Technology Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.3.2 Multilevel Logic Synthesis Operations . . . . . . . . . . . . . . . . 216
6.4 Congestion-aware Logic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.4.1 Technology Decomposition Targeting Netlength and
Mutual Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.4.2 Multilevel Synthesis Operations Targeting Congestion . . 221
6.4.3 Comparison of Congestion-aware Logic Synthesis
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7 CONGESTION IMPLICATIONS OF HIGH LEVEL
DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.1 An Illustrative Example: Coarse-grained Parallelism . . . . . . . . . 231
7.2 Local Implementation Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
发表于 2011-4-17 06:23:44 | 显示全部楼层
2.Ultra-Low Voltage Nano-Scale Memories
Ultra-low voltage nano-scale large-scale integrated circuits (LSIs) are becoming
more important to ensure the reliability of miniaturized devices, to meet the
needs of a rapidly growing mobile market, and to offset a significant increase in
the power dissipation of high-end microprocessor units. Such LSIs cannot not
be made without ultra-low voltage nano-scale memories because they need lowpower
large-capacity memories. Many challenges arise, however, in the process
of achieving such memories as their devices and voltages are scaled down below
100 nm and sub-1-V. A high signal-to-noise (S/N) ratio design is necessary in
order to cope with both a small signal voltage from low-voltage memory cells
and with large amounts of noise in a high-density memory-cell array. Moreover,
innovative circuits and devices are needed to resolve the increasing problems
of leakage currents when the threshold voltage Vt of MOSFETs is reduced
and serious variability in speed and leakage occur. Since the solutions to these
problems lie across different fields, e.g., digital and analog, and even SRAM
and DRAM, a multidisciplinary approach is needed.
Despite the importance of this field, there are few authoritative books on ultralow
voltage nano-scale memories. This book has been systematically researched
and is based on the authors’ long careers in developing memories, and lowvoltage
designs in the industry. Ultra-Low Voltage Nano-Scale Memories gives
a detailed explanation of various circuits that the authors regard as important
because the circuits covered range from basic to state-of-the-art designs. This
book is intended for both students and engineers who are interested in ultra-low
voltage nano-scale memory LSIs. Moreover, it is instructive not only for memory
designers, but also for all digital and analog LSI designers who are at the leading
edge of such LSI developments.
Chapter 1 describes the basics of digital, analog, and memory circuits, and
low-voltage related circuits. First, the basics of LSI devices, leakage currents,
and CMOS digital and analog circuits including circuit models are discussed.
Then the basics of memory LSIs, DRAMs, SRAMs, and flash memory are
explained, followed by a discussion of memory related issues such as soft errors,
redundancy, and error checking and correcting (ECC) circuits. Issues related to
voltage, such as the scaling law, power-supply schemes, and trends in powersupply
voltages are also described. Finally, various power-supply management
issues for future memory and on-chip voltage converters are briefly discussed.
Chapter 2 describes ultra-low voltage nano-scale DRAM cells. First, the
trends in DRAM-cells and 1-T-based DRAM-cells are discussed. After that, the
design of the folded-data-line 1-T cell is described five ways: in terms of the
lowest necessary Vt and word voltage, the signal charge and the signal voltage,
noise sources, the gate-over drive of the sense amp, and noise reductions. Opendata-
line 1-T cells and state-of-the-art DRAM cells, such as the two-transistor
(2-T) DRAM cell, the so-called ‘twin cell’, as well as a double-gate fully-depleted
SOI 2-T cell, and gain cells are also explained.
Chapter 3 describes ultra-low voltage nano-scale SRAM cells. An explanation
of the recent trends in SRAM-cell developments, is followed by a discussion
of the leakage currents, and the voltage margin of 6-T SRAM cells, as well as
their improvements. Finally, the 6-T SRAM cell is compared with the 1-T cell
in terms of its voltage margin and soft error immunity.
Chapter 4 describes various circuit techniques that are used to reduce
subthreshold leakage currents in RAM peripheral circuits. The basic principles
of how to reduce leakage are described, with particular emphasis on the use of
gate-source reverse biasing schemes. Various biasing schemes are discussed in
detail, followed by applications to RAM cells and peripheral circuits in both
standby and active modes.
Chapter 5 deals with the issue of variability in the nanometer era. The main
focus is leakage and speed variations that are caused by variations in Vt . Various
solutions with redundancy and ECC, layout, controls of internal supply voltages,
and new devices such as planar double-gate fully-depleted SOI are discussed.
Chapter 6 describes the reference voltage generators that provide reference
voltages for other converters. Various generators such as Vt-referenced, Vt-
difference, band-gap generators, voltage trimming circuits, and burn-in test
capability are described in detail.
Chapter 7 describes voltage down-converters in terms of their basic design
concept, transient characteristics and phase compensation as well as their powersupply
rejection ratio. Half-VDD generators are also briefly discussed.
Chapter 8 deals with the circuit configurations of various voltage-up
converters and negative voltage generators. Basic voltage converters with capacitors,
Dickson-type voltage multipliers, and switched-capacitor-type voltage
multipliers are explained and compared. Level monitors are also discussed.
Chapter 9 describes high-voltage tolerant circuit techniques that manage
the voltage differences between peripheral circuits as well as between internal
circuits and interface circuits of chips operating at a high external voltage.
We are indebted to many people, especially to our research colleagues at the
Hitachi Central Research Laboratory, Tokyo who have collaborated with us, and
one particular member of the administrative team, Ms. Anzai. They have offered
support, advice, and the material needed to complete our work. Without their
support this book would not have been possible.
发表于 2011-4-17 06:25:37 | 显示全部楼层
Take a look at the book -- 6.High Performance Energy Efficient Microprocessor Design
发表于 2011-4-17 06:29:41 | 显示全部楼层
"HIGH-PERFORMANCE ENERGY-EFFICIENT MICROPROCESSOR DESIGN"
===================================================
TABLE OF CONTENTS
Introduction vii
Vojin G. Oklobdzija and Ram K. Krishnamurthy

1
Ultra-low power processor design 1
Christian Piguet

2
Design of energy-efficient digital circuits 31
Bart Zeydel and Vojin G. Oklobdzija

3
Clocked storage elements in digital systems 57
Nikola Nedovic and Vojin G. Oklobdzija

4
Static memory design 89
Nestoras Tzartzanis

5
Large-scale circuit placement 121
Ameya R. Agnihotri, Satoshi Ono, Mehmet Can Yildiz, and Patrick H. Madden

6
Energy-delay characteristics of CMOS adders 147
Vojin G. Oklobdzija and Bart R. Zeydel

7
High-performance energy-efficient dual-supply ALU design 171
Sanu K. Mathew, Mark A. Anders, and Ram K. Krishnamurthy

8
Binary floating-point unit design: the fused multiply-add dataflow 189
Eric Schwarz

9
Microprocessor architecture for yield enhancement and reliable operation 209
Hisashige Ando

10
How is bandwidth used in computers? 235
Phil Emma

11
High-speed IO design 289
Warren R. Anderson

12
Processor core and low power SoC design for embedded systems 311
Naohiko Irie

Index 337
发表于 2011-4-17 06:37:13 | 显示全部楼层
Low Power VCO Design in CMOS
=========================================================
Contents
Part I VCO Design
1 VCOBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Frequency Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 VCO-Gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Pulling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Phase Noise and Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Integrated VCO Circuit Options. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Ring Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 LC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 VCO Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Tank Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Q-Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Reactive to Resistive Impedance . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Phase Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 LC-Tank Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Series and Parallel Resistance . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Center Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Tank Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 VCODesignTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Barkhausen Oscillator Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Leeson’s Empirical Phase Noise Expression . . . . . . . . . . . . . . . . . 21
3.4 Linear Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Craninckx Linear Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Mixer Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Hajimiri’s Linear Time Variant Approach. . . . . . . . . . . . . . . . . . . 24
3.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Low Power Low Phase Noise VCO Design . . . . . . . . . . . . . . . . . 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Design for Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Design for Low Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
发表于 2011-4-17 06:38:21 | 显示全部楼层
Part II CMOS Devices for VCO Design
5 MOS Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6 Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1 Planar Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Parasitic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Optimized VCO-Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.5 Inductor Scaling and Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.1 Linear Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Junction Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 MOS-Varactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3.1 Principle of Inversion Mode Varactors . . . . . . . . . . . . . . . . 58
7.3.2 Accumulation Mode Varactors . . . . . . . . . . . . . . . . . . . . . . 63
Part III Fully Integrated VCO Designs
8 VCODesignGuide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Varactor Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Inductor Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.4 VCO Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9 1.3GHz Fully Integrated CMOS VCO for GSM . . . . . . . . . . . 77
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.3 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.4 Simulation Versus Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10 1.8GHz Quadrature VCO Design for DCS1800 and GSM. . 83
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Quadrature Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 Differential Tuning Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.5 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11 A Fully Integrated 51 GHz VCO in 0.13 μm CMOS . . . . . . . . 91
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.3 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.4 Summary & Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12 Dual Band 1 GHz / 2GHz VCO Design . . . . . . . . . . . . . . . . . . . 99
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
12.2 A Fully Differential Voltage Controlled Inductor . . . . . . . . . . . . . 99
12.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.4 Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
12.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Part IV General Conclusion
13 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Part V Appendices
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
State of The Art VCOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条


小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-12-26 09:10 , Processed in 0.023901 second(s), 5 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表