|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
本帖最后由 hi_china59 于 2013-5-3 08:32 编辑
Frequency-domain Control Design for High Performance Systems by John OBrien
ISBN: 1849194815
2012
The Institution of Engineering and Technology is one of the world's leading professional societies for the engineering and technology community.
The IET publishes more than 100 new titles every year; a rich mix of books, journals and magazines with a back catalogue of more than 350 books in 18 different subject areas including:
Contents
1 Justification for feedback control 1
1.1 Tracking 2
1.1.1 Disturbance rejection 3
1.1.2 Sensitivity to parameter variation 3
1.1.3 Transient response 4
1.2 Exercises 5
2 Plant descriptions 7
2.1 Mathematical preliminaries 8
2.2 Plant modeling in the frequency domain 9
2.2.1 Laplace transform 9
2.2.2 Transfer function/transfer matrix 10
2.2.3 Frequency response 11
2.2.4 Nonminimum phase system 13
2.2.5 Bode phase/gain relationship 13
2.2.6 Nonminimum phase lag 14
2.3 Plant modeling in the time domain 16
2.3.1 Solution of the state differential equation 17
2.3.2 Controllability and observability 19
2.3.3 Minimal state space realizations 20
2.3.4 Diagonalizing the state matrix 20
2.3.5 Transfer function from the state equation 21
2.4 Linearization 22
2.5 System identification 24
2.6 Exercises 25
3 Feedback 27
3.1 Feedback 28
3.2 Sensitivity 29
3.3 Bode sensitivity integral 31
3.4 Bandwidth limitations 31
3.4.1 Sensor noise 31
3.4.2 Actuator limits 32
3.4.3 Plant limits – poles 32
3.4.4 Plant limits – zeros 34
3.4.5 Plant knowledge 37
3.4.6 Time delay 38
3.5 Exercises 38
4 Feedforward 41
4.1 Command feedforward 41
4.2 Prefilter 46
4.3 Exercises 48
5 Stability 49
5.1 Bounded-input, bounded-output stability 49
5.1.1 Marginally stable systems 50
5.1.2 BIBO stability of state equations 51
5.2 Zero input stability 52
5.2.1 Hidden modes 52
5.3 Nyquist Stability Criterion 54
5.4 Relative stability 63
5.5 Internal stability 67
5.6 Generalized Nyquist Stability Criterion 68
5.7 Gershgorin analysis 68
5.7.1 Case study: multiaxis control of a parallel robot 69
5.8 Lyapunov method 74
5.9 Direct method 77
5.10 Case study: set point control of a parallel robot 78
5.11 Kinematic set point control 78
5.11.1 Kinematic control law 80
5.11.2 Examples of kinematic set point control 80
5.11.3 Effect of mechanism singularities on the kinematic
set point controller 82
5.12 Absolute stability 83
5.12.1 Circle Criterion 84
5.12.2 SISO case 85
5.12.3 Popov Criterion 86
5.13 Exercises 87
6 Feedback design – linear 91
6.1 The Bode loop response 93
6.1.1 Shaping the response below crossover: roll-off slope in
between first and second order 93
6.1.2 Shaping the loop response above crossover: high-frequency
slope and the Bode step 95
6.1.3 The complete loop shape 97
6.1.4 Case study: loop shaping 98
6.2 Phase stabilization 106
6.3 Nyquist-stable system 109
6.4 Two-input, single-output control 109
6.5 Single-input, two-output control 113
6.5.1 Case study: SITO control of a ship’s rudder 115
6.5.2 Case study: poor application of Nyquist-stable control 120
6.6 Exercises 122
7 Feedback design – nonlinear 127
7.1 Anti-windup 127
7.2 Nonlinear dynamic compensation 128
7.2.1 Case study: nonlinear dynamic compensator design for a
vibration suppression system 129
7.3 Multipurpose nonlinear dynamic compensation 143
7.3.1 Case study: anti-windup control 145
7.3.2 Case study: nonlinear dynamic compensation for multiple
saturations 148
7.4 Variable gain for SITO feedback systems 155
7.4.1 Case study: HSS rate error variable gain SITO controller 156
7.5 Exercises 160
8 References 163
Appendix: Proof of Bode sensitivity integral 165
Bibliography 171
Index 177
|
|