|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
我在userlogic中例化了一个模块,代码如下,红色部分为例化模块部分:
module user_logic
(
// -- ADD USER PORTS BELOW THIS LINE ---------------
// --USER ports added here
match_addr,
match,
// -- ADD USER PORTS ABOVE THIS LINE ---------------
// -- DO NOT EDIT BELOW THIS LINE ------------------
// -- Bus protocol ports, do not add to or delete
Bus2IP_Clk, // Bus to IP clock
Bus2IP_Reset, // Bus to IP reset
Bus2IP_Data, // Bus to IP data bus
Bus2IP_BE, // Bus to IP byte enables
Bus2IP_RdCE, // Bus to IP read chip enable
Bus2IP_WrCE, // Bus to IP write chip enable
IP2Bus_Data, // IP to Bus data bus
IP2Bus_RdAck, // IP to Bus read transfer acknowledgement
IP2Bus_WrAck, // IP to Bus write transfer acknowledgement
IP2Bus_Error // IP to Bus error response
// -- DO NOT EDIT ABOVE THIS LINE ------------------
); // user_logic
// -- ADD USER PARAMETERS BELOW THIS LINE ------------
// --USER parameters added here
// -- ADD USER PARAMETERS ABOVE THIS LINE ------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol parameters, do not add to or delete
parameter C_SLV_DWIDTH = 32;
parameter C_NUM_REG = 16;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
// -- ADD USER PORTS BELOW THIS LINE -----------------
// --USER ports added here
output match_addr;
output match;
// -- ADD USER PORTS ABOVE THIS LINE -----------------
// -- DO NOT EDIT BELOW THIS LINE --------------------
// -- Bus protocol ports, do not add to or delete
input Bus2IP_Clk;
input Bus2IP_Reset;
input [0 : C_SLV_DWIDTH-1] Bus2IP_Data;
input [0 : C_SLV_DWIDTH/8-1] Bus2IP_BE;
input [0 : C_NUM_REG-1] Bus2IP_RdCE;
input [0 : C_NUM_REG-1] Bus2IP_WrCE;
output [0 : C_SLV_DWIDTH-1] IP2Bus_Data;
output IP2Bus_RdAck;
output IP2Bus_WrAck;
output IP2Bus_Error;
// -- DO NOT EDIT ABOVE THIS LINE --------------------
//----------------------------------------------------------------------------
// Implementation
//----------------------------------------------------------------------------
// --USER nets declarations added here, as needed for user logic
//reg we;
//wire [0 : C_SLV_DWIDTH-1] din;
//wire [0 : 3] wr_addr;
wire match;
wire busy;
wire [0 : 15] match_addr;
//reg[0:3] data_cnt;
//wire we;
//reg we1;
//reg[0:3] wr_addr; //cam address bus
//reg[0:31] din;//cam data input
//reg [0:4] data_cnt0;
//reg [0:2] state;
//reg [0:2] next_state;
// Nets for user logic slave model s/w accessible register example
reg [0 : C_SLV_DWIDTH-1] slv_reg0;
reg [0 : C_SLV_DWIDTH-1] slv_reg1;
reg [0 : C_SLV_DWIDTH-1] slv_reg2;
reg [0 : C_SLV_DWIDTH-1] slv_reg3;
reg [0 : C_SLV_DWIDTH-1] slv_reg4;
reg [0 : C_SLV_DWIDTH-1] slv_reg5;
reg [0 : C_SLV_DWIDTH-1] slv_reg6;
reg [0 : C_SLV_DWIDTH-1] slv_reg7;
reg [0 : C_SLV_DWIDTH-1] slv_reg8;
reg [0 : C_SLV_DWIDTH-1] slv_reg9;
reg [0 : C_SLV_DWIDTH-1] slv_reg10;
reg [0 : C_SLV_DWIDTH-1] slv_reg11;
reg [0 : C_SLV_DWIDTH-1] slv_reg12;
reg [0 : C_SLV_DWIDTH-1] slv_reg13;
reg [0 : C_SLV_DWIDTH-1] slv_reg14;
reg [0 : C_SLV_DWIDTH-1] slv_reg15;
wire [0 : 15] slv_reg_write_sel;
wire [0 : 15] slv_reg_read_sel;
reg [0 : C_SLV_DWIDTH-1] slv_ip2bus_data;
wire slv_read_ack;
wire slv_write_ack;
integer byte_index, bit_index;
cam_32x16 cam_test (
.Bus2IP_Reset(Bus2IP_Reset),
.Bus2IP_Clk(Bus2IP_Clk),
.match(match),
.match_addr(match_addr),
.busy(busy),
.slv_reg0(slv_reg0),
.slv_reg1(slv_reg1),
.slv_reg2(slv_reg2),
.slv_reg3(slv_reg3),
.slv_reg4(slv_reg4),
.slv_reg5(slv_reg5),
.slv_reg6(slv_reg6),
.slv_reg7(slv_reg7),
.slv_reg8(slv_reg8),
.slv_reg9(slv_reg9),
.slv_reg10(slv_reg10),
.slv_reg11(slv_reg11),
.slv_reg12(slv_reg12),
.slv_reg13(slv_reg13),
.slv_reg14(slv_reg14),
.slv_reg15(slv_reg15)
);
// ------------------------------------------------------
// Example code to read/write user logic slave model s/w accessible registers
//
// Note:
// The example code presented here is to show you one way of reading/writing
// software accessible registers implemented in the user logic slave model.
// Each bit of the Bus2IP_WrCE/Bus2IP_RdCE signals is configured to correspond
// to one software accessible register by the top level template. For example,
// if you have four 32 bit software accessible registers in the user logic,
// you are basically operating on the following memory mapped registers:
//
// Bus2IP_WrCE/Bus2IP_RdCE Memory Mapped Register
// "1000" C_BASEADDR + 0x0
// "0100" C_BASEADDR + 0x4
// "0010" C_BASEADDR + 0x8
// "0001" C_BASEADDR + 0xC
//
// ------------------------------------------------------
assign
slv_reg_write_sel = Bus2IP_WrCE[0:15],
slv_reg_read_sel = Bus2IP_RdCE[0:15],
slv_write_ack = Bus2IP_WrCE[0] || Bus2IP_WrCE[1] || Bus2IP_WrCE[2] || Bus2IP_WrCE[3] || Bus2IP_WrCE[4] || Bus2IP_WrCE[5] || Bus2IP_WrCE[6] || Bus2IP_WrCE[7] || Bus2IP_WrCE[8] || Bus2IP_WrCE[9] || Bus2IP_WrCE[10] || Bus2IP_WrCE[11] || Bus2IP_WrCE[12] || Bus2IP_WrCE[13] || Bus2IP_WrCE[14] || Bus2IP_WrCE[15],
slv_read_ack = Bus2IP_RdCE[0] || Bus2IP_RdCE[1] || Bus2IP_RdCE[2] || Bus2IP_RdCE[3] || Bus2IP_RdCE[4] || Bus2IP_RdCE[5] || Bus2IP_RdCE[6] || Bus2IP_RdCE[7] || Bus2IP_RdCE[8] || Bus2IP_RdCE[9] || Bus2IP_RdCE[10] || Bus2IP_RdCE[11] || Bus2IP_RdCE[12] || Bus2IP_RdCE[13] || Bus2IP_RdCE[14] || Bus2IP_RdCE[15];
// implement slave model register(s)
always @( posedge Bus2IP_Clk )
begin: SLAVE_REG_WRITE_PROC
if ( Bus2IP_Reset == 1 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
slv_reg4 <= 0;
slv_reg5 <= 0;
slv_reg6 <= 0;
slv_reg7 <= 0;
slv_reg8 <= 0;
slv_reg9 <= 0;
slv_reg10 <= 0;
slv_reg11 <= 0;
slv_reg12 <= 0;
slv_reg13 <= 0;
slv_reg14 <= 0;
slv_reg15 <= 0;
end
else
case ( slv_reg_write_sel )
16'b1000000000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg0[bit_index] <= Bus2IP_Data[bit_index];
16'b0100000000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg1[bit_index] <= Bus2IP_Data[bit_index];
16'b0010000000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg2[bit_index] <= Bus2IP_Data[bit_index];
16'b0001000000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg3[bit_index] <= Bus2IP_Data[bit_index];
16'b0000100000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg4[bit_index] <= Bus2IP_Data[bit_index];
16'b0000010000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg5[bit_index] <= Bus2IP_Data[bit_index];
16'b0000001000000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg6[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000100000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg7[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000010000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg8[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000001000000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg9[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000000100000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg10[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000000010000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg11[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000000001000 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg12[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000000000100 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg13[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000000000010 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg14[bit_index] <= Bus2IP_Data[bit_index];
16'b0000000000000001 :
for ( byte_index = 0; byte_index <= (C_SLV_DWIDTH/8)-1; byte_index = byte_index+1 )
if ( Bus2IP_BE[byte_index] == 1 )
for ( bit_index = byte_index*8; bit_index <= byte_index*8+7; bit_index = bit_index+1 )
slv_reg15[bit_index] <= Bus2IP_Data[bit_index];
default : ;
endcase
end // SLAVE_REG_WRITE_PROC
// implement slave model register read mux
always @( slv_reg_read_sel or slv_reg0 or slv_reg1 or slv_reg2 or slv_reg3 or slv_reg4 or slv_reg5 or slv_reg6 or slv_reg7 or slv_reg8 or slv_reg9 or slv_reg10 or slv_reg11 or slv_reg12 or slv_reg13 or slv_reg14 or slv_reg15 )
begin: SLAVE_REG_READ_PROC
case ( slv_reg_read_sel )
16'b1000000000000000 : slv_ip2bus_data <= slv_reg0;
16'b0100000000000000 : slv_ip2bus_data <= slv_reg1;
16'b0010000000000000 : slv_ip2bus_data <= slv_reg2;
16'b0001000000000000 : slv_ip2bus_data <= slv_reg3;
16'b0000100000000000 : slv_ip2bus_data <= slv_reg4;
16'b0000010000000000 : slv_ip2bus_data <= slv_reg5;
16'b0000001000000000 : slv_ip2bus_data <= slv_reg6;
16'b0000000100000000 : slv_ip2bus_data <= slv_reg7;
16'b0000000010000000 : slv_ip2bus_data <= slv_reg8;
16'b0000000001000000 : slv_ip2bus_data <= slv_reg9;
16'b0000000000100000 : slv_ip2bus_data <= slv_reg10;
16'b0000000000010000 : slv_ip2bus_data <= slv_reg11;
16'b0000000000001000 : slv_ip2bus_data <= slv_reg12;
16'b0000000000000100 : slv_ip2bus_data <= slv_reg13;
16'b0000000000000010 : slv_ip2bus_data <= slv_reg14;
16'b0000000000000001 : slv_ip2bus_data <= slv_reg15;
default : slv_ip2bus_data <= 0;
endcase
end // SLAVE_REG_READ_PROC
// ------------------------------------------------------------
// Example code to drive IP to Bus signals
// ------------------------------------------------------------
assign IP2Bus_Data = slv_ip2bus_data;
assign IP2Bus_WrAck = slv_write_ack;
assign IP2Bus_RdAck = slv_read_ack;
assign IP2Bus_Error = 0;
endmodule
其他代码为xps自动生成部分, 被例化模块经过单独调试可运行,被例化模块中的几个输出引脚接到了板子上的led, 经过上电调试led不亮,userlogic中的软件可读写寄存器可以被正确写入,怀疑是程序时序有问题,不知该怎样检查,请高手指点 |
|