|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
1 Introduction
1.1 Historical Review
1.2 Multiple-Quadrant Choppers
1.2.1 Multiple-Quadrant Operation
1.2.2 The First-Quadrant Chopper
1.2.3 The Second-Quadrant Chopper
1.2.4 The Third-Quadrant Chopper
1.2.5 The Fourth-Quadrant Chopper
1.2.6 The First and Second Quadrant Chopper
1.2.7 The Third and Fourth Quadrant Chopper
1.2.8 The Four-Quadrant Chopper
1.3 Pump Circuits
1.3.1 Fundamental Pumps
1.3.1.1 Buck Pump
1.3.1.2 Boost Pump
1.3.1.3 Buck-Boost Pump
1.3.2 Developed Pumps
1.3.2.1 Positive Luo-Pump
1.3.2.2 Negative Luo-Pump
1.3.2.3 Cúk-Pump
1.3.3 Transformer-Type Pumps
1.3.3.1 Forward Pump
1.3.3.2 Fly-Back Pump
1.3.3.3 ZETA Pump
1.3.4 Super-Lift Pumps
1.3.4.1 Positive Super Luo-Pump
1.3.4.2 Negative Super Luo-Pump
1.3.4.3 Positive Push-Pull Pump
1.3.4.4 Negative Push-Pull Pump
1.3.4.5 Double/Enhanced Circuit (DEC)
1.4 Development of DC/DC Conversion Technique
1.4.1 The First Generation Converters
1.4.1.1 Fundamental Converters
1.4.1.2 Transformer-Type Converters
1.4.1.3 Developed Converters
1.4.1.4 Voltage Lift Converters
1.4.1.5 Super Lift Converters
1.4.2 The Second Generation Converters
1.4.3 The Third Generation Converters
1.4.3.1 Switched Capacitor Converters
1.4.3.2 Multiple-Quadrant Switched Capacitor
Luo-Converters
1.4.3.3 Multiple-Lift Push-Pull Switched Capacitor
Converters
1.4.3.4 Multiple-Quadrant Switched Inductor Converters
1.4.4 The Fourth Generation Converters
1.4.4.1 Zero-Current-Switching Quasi-Resonant
Converters
1.4.4.2 Zero-Voltage-Switching Quasi-Resonant
Converters
1.4.4.3 Zero-Transition Converters
1.4.5 The Fifth Generation Converters
1.4.6 The Sixth Generation Converters
1.5 Categorize Prototypes and DC/DC Converter Family Tree
References
2 Voltage-Lift Converters
2.1 Introduction
2.2 Seven Self-Lift Converters
2.2.1 Self-Lift Cúk Converter
2.2.1.1 Continuous Conduction Mode
2.2.1.2 Discontinuous Conduction Mode
2.2.2 Self-Lift P/O Luo-Converter
2.2.2.1 Continuous Conduction Mode
2.2.2.2 Discontinuous Conduction Mode
2.2.3 Reverse Self-Lift P/O Luo-Converter
2.2.3.1 Continuous Conduction Mode.
2.2.3.2 Discontinuous Conduction Mode
2.2.4 Self-Lift N/O Luo-Converter
2.2.4.1 Continuous Conduction Mode
2.2.4.2 Discontinuous Conduction Mode
2.2.5 Reverse Self-Lift N/O Luo-Converter
2.2.5.1 Continuous Conduction Mode
2.2.5.2 Discontinuous Conduction Mode
2.2.6 Self-Lift SEPIC
2.2.6.1 Continuous Conduction Mode
2.2.6.2 Discontinuous Conduction Mode
2.2.7 Enhanced Self-Lift P/O Luo-Converter
2.3 Positive Output Luo-Converters
2.3.1 Elementary Circuit
2.3.1.1 Circuit Description
2.3.1.2 Variations of Currents and Voltages
2.3.1.3 Instantaneous Values of Currents and Voltages
2.3.1.4 Discontinuous Mode
2.3.1.5 Stability Analysis
2.3.2 Self-Lift Circuit
2.3.2.1 Circuit Description
2.3.2.2 Average Current
I
C
1
and Source Current
I
S
2.3.2.3 Variations of Currents and Voltages
2.3.2.4 Instantaneous Value of the Currents and
Voltages
2.3.2.5 Discontinuous Mode
2.3.2.6 Stability Analysis
2.3.3 Re-Lift Circuit
2.3.3.1 Circuit Description
2.3.3.2 Other Average Currents
2.3.3.3 Variations of Currents and Voltages
2.3.3.4 Instantaneous Value of the Currents and
Voltages
2.3.3.5 Discontinuous Mode
2.3.3.6 Stability Analysis
2.3.4 Multiple-Lift Circuits
2.3.4.1 Triple-Lift Circuit
2.3.4.2 Quadruple-Lift Circuit
2.3.5 Summary
2.3.6 Discussion
2.3.6.1 Discontinuous-Conduction Mode
2.3.6.2 Output Voltage V
O
versus Conduction Duty
k
2.3.6.3 Switch Frequency
f
2.4 Negative Output Luo-Converters
2.4.1 Elementary Circuit
2.4.1.1 Circuit Description
2.4.1.2 Average Voltages and Currents
2.4.1.3 Variations of Currents and Voltages
2.4.1.4 Instantaneous Values of Currents and
Voltages
2.4.1.5 Discontinuous Mode
2.4.2 Self-Lift Circuit
2.4.2.1 Circuit Description
2.4.2.2 Average Voltages and Currents
2.4.2.3 Variations of Currents and Voltages
2.4.2.4 Instantaneous Value of the Currents and
Voltages
2.4.2.5 Discontinuous Mode
2.4.3 Re-Lift Circuit
2.4.3.1 Circuit Description
2.4.3.2 Average Voltages and Currents
2.4.3.3 Variations of Currents and Voltages
2.4.3.4 Instantaneous Value of the Currents and
Voltages
2.4.3.5 Discontinuous Mode
2.4.4 Multiple-Lift Circuits
2.4.4.1 Triple-Lift Circuit
2.4.4.2 Quadruple-Lift Circuit
2.4.5 Summary
2.5 Modified Positive Output Luo-Converters
2.5.1 Elementary Circuit
2.5.2 Self-Lift Circuit
2.5.3 Re-Lift Circuit
2.5.4 Multi-Lift Circuit
2.5.5 Application
2.6 Double Output Luo-Converters
2.6.1 Elementary Circuit
2.6.1.1 Positive Conversion Path
2.6.1.2 Negative Conversion Path
2.6.1.3 Discontinuous Mode
2.6.2 Self-Lift Circuit
2.6.2.1 Positive Conversion Path
2.6.2.2 Negative Conversion Path
2.6.2.3 Discontinuous Conduction Mode
2.6.3 Re-Lift Circuit
2.6.3.1 Positive Conversion Path
2.6.3.2 Negative Conversion Path
2.6.3.3 Discontinuous Conduction Mode
2.6.4 Multiple-Lift Circuit
2.6.4.1 Triple-Lift Circuit
2.6.4.2 Quadruple-Lift Circuit
2.6.5 Summary
2.6.5.1 Positive Conversion Path
2.6.5.2 Negative Conversion Path
2.6.5.3 Common Parameters
Bibliography
3 Positive Output Super-Lift Luo-Converters
3.1 Introduction
3.2 Main Series
3.2.1 Elementary Circuit
3.2.2 Re-Lift Circuit
3.2.3 Triple-Lift Circuit
3.2.4 Higher Order Lift Circuit
3.3 Additional Series
3.3.1 Elementary Additional Circuit
3.3.2 Re-Lift Additional Circuit
3.3.3 Triple-Lift Additional Circuit
3.3.4 Higher Order Lift Additional Circuit
3.4 Enhanced Series
3.4.1 Elementary Enhanced Circuit
3.4.2 Re-Lift Enhanced Circuit
3.4.3 Triple-Lift Enhanced Circuit
3.4.4 Higher Order Lift Enhanced Circuit
3.5 Re-Enhanced Series
3.5.1 Elementary Re-Enhanced Circuit
3.5.2 Re-Lift Re-Enhanced Circuit
3.5.3 Triple-Lift Re-Enhanced Circuit
3.5.4 Higher Order Lift Re-Enhanced Circuit
3.6 Multiple-Enhanced Series
3.6.1 Elementary Multiple-Enhanced Circuit
3.6.2 Re-Lift Multiple-Enhanced Circuit
3.6.3 Triple-Lift Multiple-Enhanced Circuit
3.6.4 Higher Order Lift Multiple-Enhanced Circuit
3.7 Summary of Positive Output Super-Lift Luo-Converters
3.8 Simulation Results
3.8.1 Simulation Results of a Triple-Lift Circuit
3.8.2 Simulation Results of a Triple-Lift Additional Circuit
3.9 Experimental Results
3.9.1 Experimental Results of a Triple-Lift Circuit
3.9.2 Experimental Results of a Triple-Lift Additional Circuit
3.9.3 Efficiency Comparison of Simulation and Experimental
Results
Bibliography
4 Negative Output Super-Lift Luo-Converters
4.1 Introduction
4.2 Main Series
4.2.1 Elementary Circuit
4.2.2 N/O Re-Lift Circuit
4.2.3 N/O Triple-Lift Circuit
4.2.4 N/O Higher Order Lift Circuit
4.3 Additional Series
4.3.1 N/O Elementary Additional Circuit
4.3.2 N/O Re-Lift Additional Circuit
4.3.3 N/O Triple-Lift Additional Circuit
4.3.4 N/O Higher Order Lift Additional Circuit
4.4 Enhanced Series
4.4.1 N/O Elementary Enhanced Circuit
4.4.2 N/O Re-Lift Enhanced Circuit
4.4.3 N/O Triple-Lift Enhanced Circuit
4.4.4 N/O Higher Order Lift Enhanced Circuit
4.5 Re-Enhanced Series
4.5.1 N/O Elementary Re-Enhanced Circuit
4.5.2 N/O Re-Lift Re-Enhanced Circuit
4.5.3 N/O Triple-Lift Re-Enhanced Circuit
4.5.4 N/O Higher Order Lift Re-Enhanced Circuit
4.6 Multiple-Enhanced Series
4.6.1 N/O Elementary Multiple-Enhanced Circuit
4.6.2 N/O Re-Lift Multiple-Enhanced Circuit
4.6.3 N/O Triple-Lift Multiple-Enhanced Circuit
4.6.4 N/O Higher Order Lift Multiple-Enhanced Circuit
4.7 Summary of Negative Output Super-Lift
Luo-Converters
4.8 Simulation Results
4.8.1 Simulation Results of a N/O Triple-Lift Circuit
4.8.2 Simulation Results of a N/O Triple-Lift Additional
Circuit
4.9 Experimental Results
4.9.1 Experimental Results of a N/O Triple-Lift Circuit
4.9.2 Experimental Results of a N/O Triple-Lift Additional
Circuit
4.9.3 Efficiency Comparison of Simulation and Experimental
Results
4.9.4 Transient Process and Stability Analysis
Bibliography
5 Positive Output Cascade Boost Converters
5.1 Introduction
5.2 Main Series
5.2.1 Elementary Boost Circuit
5.2.2 Two-Stage Boost Circuit
5.2.3 Three-Stage Boost Circuit
5.2.4 Higher Stage Boost Circuit
5.3 Additional Series
5.3.1 Elementary Boost Additional (Double) Circuit
5.3.2 Two-Stage Boost Additional Circuit
5.3.3 Three-Stage Boost Additional Circuit
5.3.4 Higher Stage Boost Additional Circuit
5.4 Double Series
5.4.1 Elementary Double Boost Circuit
5.4.2 Two-Stage Double Boost Circuit
5.4.3 Three-Stage Double Boost Circuit
5.4.4 Higher Stage Double Boost Circuit
5.5 Triple Series
5.5.1 Elementary Triple Boost Circuit
5.5.2 Two-Stage Triple Boost Circuit
5.5.3 Three-Stage Triple Boost Circuit
5.5.4 Higher Stage Triple Boost Circuit
5.6 Multiple Series
5.6.1 Elementary Multiple Boost Circuit
5.6.2 Two-Stage Multiple Boost Circuit
5.6.3 Three-Stage Multiple Boost Circuit
5.6.4 Higher Stage Multiple Boost Circuit
5.7 Summary of Positive Output Cascade Boost Converters
5.8 Simulation and Experimental Results
5.8.1 Simulation Results of a Three-Stage Boost Circuit
5.8.2 Experimental Results of a Three-Stage Boost Circuit
5.8.3 Efficiency Comparison of Simulation and Experimental
Results
5.8.4 Transient Process
Bibliography
6 Negative Output Cascade Boost Converters
6.1 Introduction
6.2 Main Series
6.2.1 N/O Elementary Boost Circuit
6.2.2 N/O Two-Stage Boost Circuit
6.2.3 N/O Three-Stage Boost Circuit
6.2.4 N/O Higher Stage Boost Circuit
6.3 Additional Series
6.3.1 N/O Elementary Additional Boost Circuit
6.3.2 N/O Two-Stage Additional Boost Circuit
6.3.3 N/O Three-Stage Additional Boost Circuit
6.3.4 N/O Higher Stage Additional Boost Circuit
6.4 Double Series
6.4.1 N/O Elementary Double Boost Circuit
6.4.2 N/O Two-Stage Double Boost Circuit
6.4.3 N/O Three-Stage Double Boost Circuit
6.4.4 N/O Higher Stage Double Boost Circuit
6.5 Triple Series
6.5.1 N/O Elementary Triple Boost Circuit
6.5.2 N/O Two-Stage Triple Boost Circuit
6.5.3 N/O Three-Stage Triple Boost Circuit
6.5.4 N/O Higher Stage Triple Boost Circuit
6.6 Multiple Series
6.6.1 N/O Elementary Multiple Boost Circuit
6.6.2 N/O Two-Stage Multiple Boost Circuit
6.6.3 N/O Three-Stage Multiple Boost Circuit
6.6.4 N/O Higher Stage Multiple Boost Circuit
6.7 Summary of Negative Output Cascade Boost Converters
6.8 Simulation and Experimental Results
6.8.1 Simulation Results of a Three-Stage Boost Circuit
6.8.2 Experimental Results of a Three-Stage Boost Circu
6.8.3 Efficiency Comparison of Simulation and Experimental
Results
6.8.4 Transient Process
Bibliography
7 Multiple Quadrant Operating Luo-Converters
7.1 Introduction
7.2 Circuit Explanation
7.2.1 Mode A
7.2.2 Mode B
7.2.3 Mode C
7.2.4 Mode D
7.2.5 Summary
7.3 Mode A (Quadrant I Operation)
7.3.1 Circuit Description
7.3.2 Variations of Currents and Voltages
7.3.3 Discontinuous Region
7.4 Mode B (Quadrant II Operation)
7.4.1 Circuit Description
7.4.2 Variations of Currents and Voltages
7.4.3 Discontinuous Region
7.5 Mode C (Quadrant III Operation)
7.5.1 Circuit Description
7.5.2 Variations of Currents and Voltages
7.5.3 Discontinuous Region
7.6 Mode D (Quadrant IV Operation)
7.6.1 Circuit Description
7.6.2 Variations of Currents and Voltages
7.6.3 Discontinuous Region
7.7 Simulation Results
7.8 Experimental Results
7.9 Discussion
7.9.1 Discontinuous-Conduction Mode
7.9.2 Comparison with the Double-Output Luo-
Converter
7.9.3 Conduction Duty
7.9.4 Switching Frequency
Bibliography
8 Switched Component Converters
8.1 Introduction
8.2 A Two-Quadrant SC DC/DC Converter
8.2.1 Circuit Description
8.2.1.1 Mode A
8.2.1.2 Mode B
8.2.2 Mode A (Quadrant I Operation)
8.2.3 Mode B (Quadrant II Operation)
8.2.4 Experimental Results
8.2.5 Discussion
8.2.5.1 Efficiency
8.2.5.2 Conduction Duty
k
8.2.5.3 Switching Frequency
f
8.3 Four-Quadrant Switched Capacitor DC/DC
Luo-Converter
8.3.1 Mode A (Q
I
: Forward Motoring)
8.3.1.1 Mode A1: Condition
V
1
>
V
2
8.3.1.2 Mode A2: Condition
V
1
<
V
2
8.3.1.3 Experimental Results
8.3.2 Mode B (Q
II
: Forward Regenerative Braking)
8.3.2.1 Mode B1: Condition
V
1
>
V
2
8.3.2.2 Mode B2: Condition
V
1
<
V
2
8.3.3 Mode C (Q
III
: Reverse Motoring)
8.3.4 Mode D (Q
IV
: Reverse Regenerative Braking)
8.4 Switched Inductor Four-Quadrant DC/DC Luo-Converter
8.4.1 Mode A (Q
I
: Forward Motoring)
8.4.1.1 Continuous Mode
8.4.1.2 Discontinuous Mode
8.4.2 Mode B (Q
II
: Forward Regenerative Braking)
8.4.2.1 Continuous Mode
8.4.2.2 Discontinuous Mode
8.4.3 Mode C (Q
III
: Reverse Motoring)
8.4.3.1 Continuous Mode
8.4.3.2 Discontinuous Mode
8.4.4 Mode D (Q
IV
: Reverse Regenerative Braking)
8.4.4.1 Continuous Mode
8.4.4.2 Discontinuous Mode
8.4.5 Experimental Results
Bibliography
9 Positive Output Multiple-Lift Push-Pull Switched-Capacitor
Luo-Converters
9.1 Introduction
9.2 Main Series
9.2.1 Elementary Circuit
9.2.2 Re-Lift Circuit
9.2.3 Triple-Lift Circuit
9.2.4 Higher Order Lift Circuit
9.3 Additional Series
9.3.1 Elementary Additional Circuit
9.3.2 Re-Lift Additional Circuit
9.3.3 Triple-Lift Additional Circuit
9.3.4 Higher Order Lift Additional Circuit
9.4 Enhanced Series
9.4.1 Elementary Enhanced Circuit
9.4.2 Re-Lift Enhanced Circuit
9.4.3 Triple-Lift Enhanced Circuit
9.4.4 Higher Order Enhanced Lift Circuit
9.5 Re-Enhanced Series
9.5.1 Elementary Re-Enhanced Circuit
9.5.2 Re-Lift Re-Enhanced Circuit
9.5.3 Triple-Lift Re-Enhanced Circuit
9.5.4 Higher Order Lift Re-Enhanced Circuit
9.6 Multiple-Enhanced Series
9.6.1 Elementary Multiple-Enhanced Circuit
9.6.2 Re-Lift Multiple-Enhanced Circuit
9.6.3 Triple-Lift Multiple-Enhanced Circuit
9.6.4 Higher Order Lift Multiple-Enhanced Circuit
9.7 Theoretical Analysis
9.8 Summary of This Technique
9.9 Simulation Results
9.9.1 A Triple-Lift Circuit
9.9.2 A Triple-Lift Additional Circuit
9.10 Experimental Results
9.10.1 A Triple-Lift Circuit
9.10.2 A Triple-Lift Additional Circuit
Bibliography
10 Negative Output Multiple-Lift Push-Pull
Switched-Capacitor Luo-Converters
10.1 Introduction
10.2 Main Series
10.2.1 N/O Elementary Circuit
10.2.2 N/O Re-Lift Circuit
10.2.3 N/O Triple-Lift Circuit
10.2.4 N/O Higher Order Lift Circuit
10.3 Additional Series
10.3.1 N/O Elementary Additional Circuit
10.3.2 N/O Re-Lift Additional Circuit
10.3.3 N/O Triple-Lift Additional Circuit
10.3.4 N/O Higher Order Lift Additional Circuit
10.4 Enhanced Series
10.4.1 N/O Elementary Enhanced Circuit
10.4.2 N/O Re-Lift Enhanced Circuit
10.4.3 N/O Triple-Lift Enhanced Circuit
10.4.4 N/O Higher Order Lift Enhanced Circuit
10.5 Re-Enhanced Series
10.5.1 N/O Elementary Re-Enhanced Circuit
10.5.2 N/O Re-Lift Re-Enhanced Circuit
11 Multiple-Quadrant Soft-Switch Converters |
-
-
Advanced DC-DC Converters.part1.rar
1.91 MB, 下载次数: 70
, 下载积分:
资产 -2 信元, 下载支出 2 信元
-
-
Advanced DC-DC Converters.part2.rar
1.91 MB, 下载次数: 78
, 下载积分:
资产 -2 信元, 下载支出 2 信元
-
-
Advanced DC-DC Converters.part3.rar
1.91 MB, 下载次数: 72
, 下载积分:
资产 -2 信元, 下载支出 2 信元
-
-
Advanced DC-DC Converters.part4.rar
1.91 MB, 下载次数: 77
, 下载积分:
资产 -2 信元, 下载支出 2 信元
-
-
Advanced DC-DC Converters.part5.rar
975.94 KB, 下载次数: 79
, 下载积分:
资产 -2 信元, 下载支出 2 信元
|