在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 58|回复: 0

[求助] GCoM: a detailed GPU core model for accurate analytical modeling of modern GPUs

[复制链接]
发表于 5 小时前 | 显示全部楼层 |阅读模式
50资产
https://dl.acm.org/doi/10.1145/3470496.3527384

Analytical models can greatly help computer architects perform orders of magnitude faster early-stage design space exploration than using cycle-level simulators. To facilitate rapid design space exploration for graphics processing units (GPUs), prior studies have proposed GPU analytical models which capture first-order stall events causing performance degradation; however, the existing analytical models cannot accurately model modern GPUs due to their outdated and highly abstract GPU core microarchitecture assumptions. Therefore, to accurately evaluate the performance of modern GPUs, we need a new GPU analytical model which accurately captures the stall events incurred by the significant changes in the core microarchitectures of modern GPUs.
We propose GCoM, an accurate GPU analytical model which faithfully captures the key core-side stall events of modern GPUs. Through detailed microarchitecture-driven GPU core modeling, GCoM accurately models modern GPUs by revealing the following key core-side stalls overlooked by the existing GPU analytical models. First, GCoM identifies the compute structural stall events caused by the limited per-sub-core functional units. Second, GCoM exposes the memory structural stalls due to the limited banks and shared nature of per-core L1 data caches. Third, GCoM correctly predicts the memory data stalls induced by the sectored L1 data caches which split a cache line into a set of sectors sharing the same tag. Fourth, GCoM captures the idle stalls incurred by the inter- and intra-core load imbalances. Our experiments using an NVIDIA RTX 2060 configuration show that GCoM greatly improves the modeling accuracy by achieving a mean absolute error of 10.0% against Accel-Sim cycle-level simulator, whereas the state-of-the-art GPU analytical model achieves a mean absolute error of 44.9%.

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条

X

小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-7-3 22:57 , Processed in 0.011570 second(s), 6 queries , Gzip On, MemCached On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表