在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 402|回复: 15

[求助] 找書: Advancing VLSI through Machine Learning

[复制链接]
发表于 前天 18:02 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
書名: Advancing VLSI through Machine LearningInnovations and Research PerspectivesEdited By Abhishek Narayan Tripathi, Jagana Bihari Padhy, Indrasen Singh, Shubham Tayal, Ghanshyam SinghDescription:
This book explores the synergy between very large-scale integration (VLSI) and machine learning (ML) and its applications across various domains. It investigates how ML techniques can enhance the design and testing of VLSI circuits, improve power efficiency, optimize layouts, and enable novel architectures.
This book bridges the gap between VLSI and ML, showcasing the potential of this integration in creating innovative electronic systems, advancing computing capabilities, and paving the way for a new era of intelligent devices and technologies. Additionally, it covers how VLSI technologies can accelerate ML algorithms, enabling more efficient and powerful data processing and inference engines. It explores both hardware and software aspects, covering topics like hardware accelerators, custom hardware for specific ML tasks, and ML-driven optimization techniques for chip design and testing.
This book will be helpful for academicians, researchers, postgraduate students, and those working in ML-driven VLSI.
Table of Contents
Chapter 1. Optimizing Circuit Synthesis: Integrating Neural Networks and Evolutionary Algorithms for Increased Design Efficiency
Chapter 2. Study of Physical Processes Analysis and Phenomena of Insights of Trapping in the Performance Degradation in AlGaN/GaN HEMTs
Chapter 3. Framework for Design and Performance Evaluation of Memory using Memristor
Chapter 4. Innovative Design and Optimization of High-Power Amplifiers: A Comparative Study with GaN HEMT and CMOS Technologies
Chapter 5. Exploring FPGA Architecture Designs for Matrix Multiplication in Machine Learning
Chapter 6. Silicon Chip Design and Testing
Chapter 7. A Novel Deep Learning Approach for Early Brain Tumour Detection
Chapter 8. TCAD Augmented Machine Learning for the Prediction of Device Behavior and Failure Analysis
Chapter 9. Opportunities and Challenges for ML-Based FPGA Backend Flow
Chapter 10. Role of Machine Learning Applications in VLSI Design
Chapter 11. Application of Artificial Intelligence/Machine Learning in VLSI Design
Chapter 12. FinFET-Based 9T SRAM for Enhanced Performance in AI/ML Applications
Chapter 13. Power Consumption and SNM Analysis of 6T and 7T SRAM using 90nm Technology
Chapter 14. Transforming Electronics: An Extensive Analysis of Hyper-FET Technological Developments and Utilisation
Chapter 15. VLSI Realization of Smart Systems using Blockchain and Fog Computing

Advancing VLSI through Machine Learning.jpg



发表于 前天 21:55 | 显示全部楼层
from zlib

Advancing VLSI through Machine Learning Innovations and Research Perspectives ( .pdf

5.82 MB, 下载次数: 76 , 下载积分: 资产 -3 信元, 下载支出 3 信元

点评

good book,thanks for your shaing  发表于 昨天 14:35
发表于 前天 23:09 | 显示全部楼层


多谢分享
 楼主| 发表于 前天 23:50 | 显示全部楼层
发表于 昨天 00:01 | 显示全部楼层
Thanks!!!!
发表于 昨天 09:02 | 显示全部楼层


谢谢分享
发表于 昨天 09:19 | 显示全部楼层
多谢大佬分享
发表于 昨天 09:26 | 显示全部楼层



谢谢分享
发表于 昨天 10:55 | 显示全部楼层


Thanks for the share
发表于 昨天 11:33 | 显示全部楼层
advancing vlsi through machine learning, thanks
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条

小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-3-19 13:13 , Processed in 0.027274 second(s), 10 queries , Gzip On, MemCached On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表