在线咨询 切换到宽版
eetop公众号 创芯大讲堂 创芯人才网

 找回密码
 注册

手机号码,快捷登录

手机号码,快捷登录

搜帖子
楼主: typhoon222

[原创] 常数乘以负无穷等于负无穷么?

[复制链接]
 楼主| 发表于 2020-8-12 14:18:38 | 显示全部楼层


   
nanke 发表于 2020-8-10 19:51
图片里面已经说了,要可积的话,必须满足ROC条件。


图片.png
下方蓝框内两个函数为什么ROC不同呢?



回复

使用道具 举报

发表于 2020-8-12 14:26:30 | 显示全部楼层


   
typhoon222 发表于 2020-8-12 14:18
下方蓝框内两个函数为什么ROC不同呢?


因与u(t)(卷积?)是从0积分到正无穷
与u(-t)(卷积?)是从负无穷积分到0
e^(+oo)发散,e(-oo)=0
所以ROC不同

回复

使用道具 举报

 楼主| 发表于 2020-8-12 15:26:00 | 显示全部楼层
本帖最后由 typhoon222 于 2020-8-12 15:28 编辑


   
nanke 发表于 2020-8-12 14:26
因与u(t)(卷积?)是从0积分到正无穷
与u(-t)(卷积?)是从负无穷积分到0
e^(+oo)发散,e(-oo)=0


本来都是双边拉氏变化,为什么e^-at是从0到+oo积分,-e^-at是从-oo到0积分呢?
图片.png
图片.png
回复

使用道具 举报

 楼主| 发表于 2020-8-12 16:17:01 | 显示全部楼层


   
nanke 发表于 2020-8-12 15:35
u(t)是阶跃函数u(t)=0 (t=0)

楼主在看信号与系统?可以先从前面的基础看起,我学这门课已经过去快十年了 ...


噢噢 对的 u(t)是阶跃函数 -oo到0等于0

u(-t) 0到+oo等于0 所以积分范围是那样的


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条

手机版| 小黑屋| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-9-11 12:06 , Processed in 0.045418 second(s), 4 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表