代码如下:
- %***********************************************************************%
- % The following program code plots the FFT spectrum of a desired test tone.
- % Test tone based on coherent sampling criteria, and computes SNR, SNDR, THD and SFDR.
- % This program is believed to be accurate and reliable.
- % This program may get altered without prior notification.;
- % Company: xxx analog Mixed-signal Group
- % Author:
- % Date: 2016-01-09
- %***********************************************************************%
- %***********************************************************************%
- % 采样时钟240MHz,输入信号频率86.25MHz,FFT点数64,ADC分辨率10bit,仿真时间400ns。
- % 从cadence输出时间隔是4.16666667ns,共计97个点,从第20个点开始取64点做FFT。
- % cadence输出的是归一化的结果范围是0-1.6V,需除以1.6再乘以1024,转换为数字码。
- %***********************************************************************%
- clear all;
- clc;
- datafile='ADC_result8.csv'
- spectP_file='spec.csv';
- %***********************************************************************%
- % 输入采样时钟、样本点数、分辨率等变量
- %***********************************************************************%
- fs=240e6; %采样时钟
- Data_Num=64; %样本点数
- numbit=10; %ADC分辨率
- data_start=20; %取点起始位置
- fclk=fs/1e6; %x坐标轴数值显示
- numpt=Data_Num;
- fres=fclk/numpt; %Desired frequency resolution of FFT[MHz], fres=fclk/2^N
- %***********************************************************************%
- % 读取数据
- %***********************************************************************%
- d_in=csvread('ADC_result8.csv',1,1);
- d_in=d_in/1.6*1024;
- code=zeros(1,numpt);
- code(1:numpt)=d_in(data_start:data_start+numpt-1);
- %***********************************************************************%
- % Plot output code
- %***********************************************************************%
- figure;
- plot(code);
- title(sprintf('ADC Digital Output'));
- %***********************************************************************%
- % Recenter the digital sine wave, for 2's complement code
- %***********************************************************************%
- m_ean=mean(code);
- for hk=1:length(code)
- code(hk)=code(hk)-m_ean;
- end
- %***********************************************************************%
- % Display a warning, when the input generates a code greater than
- % full-scale, for 2's complement code
- %***********************************************************************%
- max_code=max(code)
- min_code=min(code)
- if (max(code)>2^(numbit-1)) | (min(code)<(0-2^(numbit-1)))
- %if (max(code)==2numbit -1) | (min(code)==0)
- disp('Warning: ADC may be clipping!');
- end
- %***********************************************************************%
- % Normalize input signal relative to full-scale
- %***********************************************************************%
- fin_dB=20*log10((max_code-min_code)/(2^numbit));
- %***********************************************************************%
- % 对数据样本加窗函数处理
- %***********************************************************************%
- % If no window function is used, the input tone must be chosen to be unique and with
- % regard to the sampling frequency. To achieve this prime numbers are introduced and the
- % input tone is determined by Fin = Fsample * (Prime Number / Data Record Size).
- % To relax this requirement, window functions such as HANNING and HAMING (see below) can
- % be introduced, however the fundamental in the resulting FFT spectrum appears 'sharper'
- %without the use of window functions.
- Dout=code';
- Doutw=Dout;
- % Doutw=Dout.*hanning(numpt);
- % Doutw=Dout.*hamming(numpt);
- % Doutw=Dout.*blackman(numpt);
- %***********************************************************************%
- % Performing the Fast Fourier Transform [FFT]
- %***********************************************************************%
- span=0; %Span of the input frequency on each side; span=max(round(numpt/200),5);
- spanh=0; %Approximate search span for harmonics on each side
- spandc=0; %Approximate search span for DC on right side
- Dout_spect=fft(Doutw);
- Dout_dB=20*log10(abs(Dout_spect)); %Recalculate to dB abs(Dout_spect)
- spectP=(abs(Dout_spect)).*(abs(Dout_spect)); %Determine power spectrum
- maxdB=max(Dout_dB(1+spandc:numpt/2));
- fin=find(Dout_dB(1:numpt/2)==maxdB); %Find the signal bin number, DC=bin1
- %***********************************************************************%
- % Calculate SNR, SNDR, THD and SFDR values.
- %***********************************************************************%
- fw=fopen(spectP_file,'w'); %write the power soectrum to file
- fprintf(fw,'%12.9e\n',spectP);
- fclose('all');
- %Find DC offset power
- Pdc=sum(spectP(1:span));
- %Extract overall signal power
- idx1=fin-span;
- idx2=fin+span;
- if(idx1<=0)
- idx1 = 1;
- end
- Ps=sum(spectP(idx1:idx2));
- %Vector/matrix to store both frequency and power of signal and harmonics
- Fh=[];
- %The 1st element in the vector/matrix represents the signal, the next element represents the 2nd harmonic
- Ph=[];
- %Vector/matrix to store the sampling points responding to the harmonics
- Nh=[];
- %Ah represents signal and harmonic amplitude
- Ah=[];
- %Find harmonic frequencies and power components in the FFT spectrum
- %For this procedure to work, ensure the folded back high order harmonics do not overlap
- %with DC or signal or lower order harmonics , so it should be modified according to the actual condition
- for har_num=1:5
- tone=rem((har_num*(fin-1)+1)/numpt,1); %Input tones greater than fSAMPLE are aliased back into the spectrum
- if tone>0.5
- tone=1-tone; %Input tones greater than 0.5*Fsample (after aliasing) are reflected
- end
- Fh=[Fh tone];
- %Check Nh to see the bin of the harmonics
- Nh=[Nh round(tone*numpt)];
- %For this procedure to work, ensure the folded back high order harmonics do not overlap
- %with DC or signal or lower order harmonics
- har_peak=max(spectP(round(tone*numpt)-spanh:round(tone*numpt)+spanh));
- har_bin=find(spectP(round(tone*numpt)-spanh:round(tone*numpt)+spanh)==har_peak);
- har_bin=har_bin+round(tone*numpt)-spanh-1;
- Ph=[Ph sum(spectP(har_bin-spanh:har_bin+spanh))];
- Ah=[Ah Dout_dB(har_bin)];
- end
- %Determine the total distortion power, it should be modified according to the actual condition.
- Pd=sum(Ph(2:5));
- %Determine the noise power
- Pn=sum(spectP(1:numpt/2))-Pdc-Ps-Pd;
- %Determine the next largest component
- spur_max=max(max(spectP(spandc+1:fin-span-1)),max(spectP(fin+span+1:numpt/2)));
- spur_bin=find(spectP(1:numpt/2)==spur_max)
- %**********************计算动态特性结果**********************%
- format; %设置输出格式
- SFDR = 10*log10(max(spectP(1:numpt/2))/spur_max); %-fin_dB
- THD = 10*log10(Pd/Ps); %+fin_dB
- SNR = 10*log10(Ps/Pn); %-fin_dB
- SNDR = 10*log10(Ps/(Pn+Pd)); %-fin_dB
- ENOB = (SNDR-1.76)/6.02;
- %disp('Note: THD is calculated from 2nd through 10th order harmonics.');
- %*********************标示信号和谐波位置*********************%
- %hold on;
- %plot((Nh(2:10)-1).*fres,Ah(2:10)-maxdB+fin_dB,'rs');
- % 标示信号
- bins=(Nh(1)-1)*fres;
- Ahs=Ah(1)-maxdB+fin_dB;
- % 标示2次谐波
- bin2=(Nh(2)-1)*fres;
- Ah2=Ah(2)-maxdB+fin_dB;
- % 标示3次谐波
- bin3=(Nh(3)-1)*fres;
- Ah3=Ah(3)-maxdB+fin_dB;
- % 标示4次谐波
- bin4=(Nh(4)-1)*fres;
- Ah4=Ah(4)-maxdB+fin_dB;
- % 标示5次谐波
- bin5=(Nh(5)-1)*fres;
- Ah5=Ah(5)-maxdB+fin_dB;
- % 在FFT频谱图中追加标示
- figure;
- plot(bins,Ahs,'rs',bin2,Ah2,'rd',bin3,Ah3,'r^',bin4,Ah4,'r*',bin5,Ah5,'rx');
- legend('SINGAL','HD2','HD3','HD4','HD5');
- %**********************图表显示**********************%
- ylabel('Full-Scale Normalized Magnitude[dB]')
- xlabel('Frequency [MHz]')
- title(sprintf('ADC FFT Spectrum (%g points)\nFs = %g MSps, Fin = %g MHz (%1.2gdBFS)', Data_Num,fs/1e6,(fin-1)*fres,fin_dB));
- grid on;
- box on;
- ylim([-110 10]);
- set(gca,'xgrid', 'off');
- set(gca, 'GridLineStyle' ,'-');
- set(gca,'yTick',[-110:10:10]);
- %****************************************************%
- %Display the results in the frequency domAIn with an FFT plot.
- for i=0:1:numpt/2-1)
- hold on;
- line([i*fres,i*fres],[-110,Dout_dB(i+1)-maxdB+fin_dB],'LineWidth',2);
- hold off;
- end
- %***********************在图中打印结果***********************%
- hold on;
- s1=sprintf('SFDR = %4.1fdB\n',SFDR);
- s2=sprintf('THD = %4.1fdB\n',THD);
- s3=sprintf('SNR = %4.1fdB\n',SNR);
- s4=sprintf('SNDR = %4.1fdB\n',SNDR);
- s5=sprintf('ENOB = %4.2fbit\n',ENOB);
- text(25,-10,s1);
- text(25,-20,s2);
- text(25,-30,s3);
- text(25,-40,s4);
- text(25,-50,s5);
- hold off;
复制代码 |