在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 14475|回复: 37

[原创] Deep Learning

[复制链接]
发表于 2016-4-9 09:01:04 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
本帖最后由 固执的寻觅 于 2016-4-9 19:19 编辑

未命名.txt (388 Bytes, 下载次数: 206 )



Author:

Ian Goodfellow

Yoshua Bengio

Aaron Courville



Contents

Website vii

Acknowledgments viii

Notation xi

1 Introduction 1

1.1 Who Should Read This Book? . . . . . . . . . . . . . . . . . . . . 8

1.2 Historical Trends in Deep Learning . . . . . . . . . . . . . . . . . 11

I Applied Math and Machine Learning Basics 29

2 Linear Algebra 31

2.1 Scalars, Vectors, Matrices and Tensors . . . . . . . . . . . . . . . 31

2.2 Multiplying Matrices and Vectors . . . . . . . . . . . . . . . . . . 34

2.3 Identity and Inverse Matrices . . . . . . . . . . . . . . . . . . . . 36

2.4 Linear Dependence and Span . . . . . . . . . . . . . . . . . . . . 37

2.5 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Special Kinds of Matrices and Vectors . . . . . . . . . . . . . . . 40

2.7 Eigendecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 44

2.9 The Moore-Penrose Pseudoinverse . . . . . . . . . . . . . . . . . . 45

2.10 The Trace Operator . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.11 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.12 Example: Principal Components Analysis . . . . . . . . . . . . . 48

3 Probability and Information Theory 53


3.1 Why Probability? . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Marginal Probability . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 The Chain Rule of Conditional Probabilities . . . . . . . . . . . . 59

3.7 Independence and Conditional Independence . . . . . . . . . . . . 60

3.8 Expectation, Variance and Covariance . . . . . . . . . . . . . . . 60

3.9 Common Probability Distributions . . . . . . . . . . . . . . . . . 62

3.10 Useful Properties of Common Functions . . . . . . . . . . . . . . 67

3.11 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 Technical Details of Continuous Variables . . . . . . . . . . . . . 71

3.13 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.14 Structured Probabilistic Models . . . . . . . . . . . . . . . . . . . 75

4 Numerical Computation 80

4.1 Overflow and Underflow . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Poor Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Gradient-Based Optimization . . . . . . . . . . . . . . . . . . . . 82

4.4 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Example: Linear Least Squares . . . . . . . . . . . . . . . . . . . 96

5 Machine Learning Basics 98

5.1 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Capacity, Overfitting and Underfitting . . . . . . . . . . . . . . . 110

5.3 Hyperparameters and Validation Sets . . . . . . . . . . . . . . . . 120

5.4 Estimators, Bias and Variance . . . . . . . . . . . . . . . . . . . . 122

5.5 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . 131

5.6 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.7 Supervised Learning Algorithms . . . . . . . . . . . . . . . . . . . 139

5.8 Unsupervised Learning Algorithms . . . . . . . . . . . . . . . . . 145

5.9 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 150

5.10 Building a Machine Learning Algorithm . . . . . . . . . . . . . . 152

5.11 Challenges Motivating Deep Learning . . . . . . . . . . . . . . . . 154

II Deep Networks: Modern Practices 165

6 Deep Feedforward Networks 167

6.1 Example: Learning XOR . . . . . . . . . . . . . . . . . . . . . . . 170


6.2 Gradient-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 176

6.3 Hidden Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.4 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.5 Back-Propagation and Other Differentiation Algorithms . . . . . 203

6.6 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7 Regularization for Deep Learning 228

7.1 Parameter Norm Penalties . . . . . . . . . . . . . . . . . . . . . . 230

7.2 Norm Penalties as Constrained Optimization . . . . . . . . . . . . 237

7.3 Regularization and Under-Constrained Problems . . . . . . . . . 239

7.4 Dataset Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 240

7.5 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7.6 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 244

7.7 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . 245

7.8 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.9 Parameter Tying and Parameter Sharing . . . . . . . . . . . . . . 251

7.10 Sparse Representations . . . . . . . . . . . . . . . . . . . . . . . . 253

7.11 Bagging and Other Ensemble Methods . . . . . . . . . . . . . . . 255

7.12 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

7.13 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . 267

7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 268

8 Optimization for Training Deep Models 274

8.1 How Learning Differs from Pure Optimization . . . . . . . . . . . 275

8.2 Challenges in Neural Network Optimization . . . . . . . . . . . . 282

8.3 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.4 Parameter Initialization Strategies . . . . . . . . . . . . . . . . . 301

8.5 Algorithms with Adaptive Learning Rates . . . . . . . . . . . . . 306

8.6 Approximate Second-Order Methods . . . . . . . . . . . . . . . . 310

8.7 Optimization Strategies and Meta-Algorithms . . . . . . . . . . . 318

9 Convolutional Networks 331

9.1 The Convolution Operation . . . . . . . . . . . . . . . . . . . . . 332

9.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

9.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

9.4 Convolution and Pooling as an Infinitely Strong Prior . . . . . . . 346

9.5 Variants of the Basic Convolution Function . . . . . . . . . . . . 348

9.6 Structured Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 359

9.7 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

9.8 Efficient Convolution Algorithms . . . . . . . . . . . . . . . . . . 363


9.9 Random or Unsupervised Features . . . . . . . . . . . . . . . . . 364

9.10 The Neuroscientific Basis for Convolutional Networks . . . . . . . 365

9.11 Convolutional Networks and the History of Deep Learning . . . . 372

10 Sequence Modeling: Recurrent and Recursive Nets 374

10.1 Unfolding Computational Graphs . . . . . . . . . . . . . . . . . . 376

10.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 379

10.3 Bidirectional RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . 396

10.4 Encoder-Decoder Sequence-to-Sequence Architectures . . . . . . . 397

10.5 Deep Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . 399

10.6 Recursive Neural Networks . . . . . . . . . . . . . . . . . . . . . . 401

10.7 The Challenge of Long-Term Dependencies . . . . . . . . . . . . . 403

10.8 Echo State Networks . . . . . . . . . . . . . . . . . . . . . . . . . 406

10.9 Leaky Units and Other Strategies for Multiple Time Scales . . . . 409

10.10 The Long Short-Term Memory and Other Gated RNNs . . . . . . 411

10.11 Optimization for Long-Term Dependencies . . . . . . . . . . . . . 415

10.12 Explicit Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

11 Practical methodology 424

11.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 425

11.2 Default Baseline Models . . . . . . . . . . . . . . . . . . . . . . . 428

11.3 Determining Whether to Gather More Data . . . . . . . . . . . . 429

11.4 Selecting Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 430

11.5 Debugging Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 439

11.6 Example: Multi-Digit Number Recognition . . . . . . . . . . . . . 443

12 Applications 446

12.1 Large Scale Deep Learning . . . . . . . . . . . . . . . . . . . . . . 446

12.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

12.3 Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 461

12.4 Natural Language Processing . . . . . . . . . . . . . . . . . . . . 464

12.5 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 480

III Deep Learning Research 489

13 Linear Factor Models 492

13.1 Probabilistic PCA and Factor Analysis . . . . . . . . . . . . . . . 493

13.2 Independent Component Analysis (ICA) . . . . . . . . . . . . . . 494


13.3 Slow Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . 496

13.5 Manifold Interpretation of PCA . . . . . . . . . . . . . . . . . . . 502

14 Autoencoders 505

14.1 Undercomplete Autoencoders . . . . . . . . . . . . . . . . . . . . 506

14.2 Regularized Autoencoders . . . . . . . . . . . . . . . . . . . . . . 507

14.3 Representational Power, Layer Size and Depth . . . . . . . . . . . 511

14.4 Stochastic Encoders and Decoders . . . . . . . . . . . . . . . . . . 512

14.5 Denoising Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 513

14.6 Learning Manifolds with Autoencoders . . . . . . . . . . . . . . . 518

14.7 Contractive Autoencoders . . . . . . . . . . . . . . . . . . . . . . 524

14.8 Predictive Sparse Decomposition . . . . . . . . . . . . . . . . . . 526

14.9 Applications of Autoencoders . . . . . . . . . . . . . . . . . . . . 527

15 Representation Learning 529

15.1 Greedy Layer-Wise Unsupervised Pretraining . . . . . . . . . . . 531

15.2 Transfer Learning and Domain Adaptation . . . . . . . . . . . . . 539

15.3 Semi-Supervised Disentangling of Causal Factors . . . . . . . . . 544

15.4 Distributed Representation . . . . . . . . . . . . . . . . . . . . . . 549

15.5 Exponential Gains from Depth . . . . . . . . . . . . . . . . . . . 556

15.6 Providing Clues to Discover Underlying Causes . . . . . . . . . . 557

16 Structured Probabilistic Models for Deep Learning 561

16.1 The Challenge of Unstructured Modeling . . . . . . . . . . . . . . 562

16.2 Using Graphs to Describe Model Structure . . . . . . . . . . . . . 566

16.3 Sampling from Graphical Models . . . . . . . . . . . . . . . . . . 583

16.4 Advantages of Structured Modeling . . . . . . . . . . . . . . . . . 584

16.5 Learning about Dependencies . . . . . . . . . . . . . . . . . . . . 585

16.6 Inference and Approximate Inference . . . . . . . . . . . . . . . . 586

16.7 The Deep Learning Approach to Structured Probabilistic Models 587

17 Monte Carlo Methods 593

17.1 Sampling and Monte Carlo Methods . . . . . . . . . . . . . . . . 593

17.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 595

17.3 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . 598

17.4 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

17.5 The Challenge of Mixing between Separated Modes . . . . . . . . 602

18 Confronting the Partition Function 608

18.1 The Log-Likelihood Gradient . . . . . . . . . . . . . . . . . . . . 609


18.2 Stochastic Maximum Likelihood and Contrastive Divergence . . . 610

18.3 Pseudolikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

18.4 Score Matching and Ratio Matching . . . . . . . . . . . . . . . . 620

18.5 Denoising Score Matching . . . . . . . . . . . . . . . . . . . . . . 622

18.6 Noise-Contrastive Estimation . . . . . . . . . . . . . . . . . . . . 623

18.7 Estimating the Partition Function . . . . . . . . . . . . . . . . . . 626

19 Approximate inference 634

19.1 Inference as Optimization . . . . . . . . . . . . . . . . . . . . . . 636

19.2 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . 637

19.3 MAP Inference and Sparse Coding . . . . . . . . . . . . . . . . . 638

19.4 Variational Inference and Learning . . . . . . . . . . . . . . . . . 641

19.5 Learned Approximate Inference . . . . . . . . . . . . . . . . . . . 653

20 Deep Generative Models 656

20.1 Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . . . . 656

20.2 Restricted Boltzmann Machines . . . . . . . . . . . . . . . . . . . 658

20.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . 662

20.4 Deep Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . 665

20.5 Boltzmann Machines for Real-Valued Data . . . . . . . . . . . . . 678

20.6 Convolutional Boltzmann Machines . . . . . . . . . . . . . . . . . 685

20.7 Boltzmann Machines for Structured or Sequential Outputs . . . . 687

20.8 Other Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . 688

20.9 Back-Propagation through Random Operations . . . . . . . . . . 689

20.10 Directed Generative Nets . . . . . . . . . . . . . . . . . . . . . . . 694

20.11 Drawing Samples from Autoencoders . . . . . . . . . . . . . . . . 712

20.12 Generative Stochastic Networks . . . . . . . . . . . . . . . . . . . 716

20.13 Other Generation Schemes . . . . . . . . . . . . . . . . . . . . . . 717

20.14 Evaluating Generative Models . . . . . . . . . . . . . . . . . . . . 719

20.15 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

Bibliography 723


Index 780

发表于 2016-4-9 14:45:14 | 显示全部楼层
在哪里?
发表于 2016-4-9 21:58:27 | 显示全部楼层
感謝分享
 楼主| 发表于 2016-5-12 13:51:45 | 显示全部楼层
回复 3# dcircuit


   你在做吗?
发表于 2016-7-17 11:28:23 | 显示全部楼层
where is the books?
 楼主| 发表于 2016-7-21 12:30:55 | 显示全部楼层
发表于 2016-7-21 19:01:25 | 显示全部楼层
学习,感谢!
发表于 2016-8-17 11:42:52 | 显示全部楼层
楼主不错,极大降低下载代价,赞一个
 楼主| 发表于 2016-10-19 17:25:46 | 显示全部楼层
回复 8# pancs


   hao
发表于 2016-10-24 20:42:43 | 显示全部楼层
thx a lot ~~
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条


小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-1-14 21:47 , Processed in 0.023944 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表