C芯片中金属线或者多晶硅(polysilicon)等导体,就象是一根根天线,当有游离的电荷时,这些“天线”便会将它们收集起来,天线越长,收集的电荷也就越多,当电荷足够多时,就会放电。
IC现代工艺中经常使用的一种方法是离子刻蚀(plasma etching),这种方法就是将物质高度电离并保持一定的能量,然后将这种物质刻蚀在晶圆上,从而形成某一层。理论上,打入晶圆的离子总的对外电性应该是呈现中性的,也就是说正离子和负离子是成对出现,但在实际中,打入晶圆的离子并不成对,这样,就产生了游离电荷。另外,离子注入(ion implanting)也可能导致电荷的聚集。可见,这种由工艺带来的影响我们是无法彻底消除的,但是,这种影响却是可以尽量减小的。
在CMOS工艺中,P型衬底是要接地的,如果这些收集了电荷的导体和衬底间有电气通路的话,那么这些电荷就会跑到衬底上去,将不会造成什么影响;如果这条通路不存在,这些电荷还是要放掉的,那么,在哪放电就会对哪里造成不可挽回的后果,一般来讲,最容易遭到伤害的地方就是栅氧化层。
通常情况下,我们用“天线比率”(“antenna ratio”)来衡量一颗芯片能发生天线效应的几率。“天线比率”的定义是:构成所谓“天线”的导体(一般是金属)的面积与所相连的栅氧化层面积的比率。随着工艺技术的发展,栅的尺寸越来越小,金属的层数越来越多,发生天线效应的可能性就越大,所以,在0.4um/DMSP/TMSP以上工艺,我们一般不大会考虑天线效应。而采用0.4um以下的工艺就不得不考虑这个问题了。
可通过插入二极管(NAC Diode)的方法来解决天线效应,这样当金属收集到电荷以后就通过二极管来放电,避免了对栅极的击穿。
注: DMSP——Double Metal Single Poly
TMSP——Three Metal Single Poly