|
|
发表于 2011-4-17 03:21:58
|
显示全部楼层
Part 1 of Content:
===========================================================
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Analog andDigital inPrismofESDDesign . . . . . . . . . . . 1
1.2 ImportantDefinitions . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 ESDProtectionNetwork . . . . . . . . . . . . . . . . . . 4
1.2.2 ESDClamps . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 AbsoluteMaximumLimits andPulsedSOA . . . . . . . 7
1.2.4 ESD Pulse Specification . . . . . . . . . . . . . . . . . . 8
1.2.5 Breakdown and Instability . . . . . . . . . . . . . . . . . 9
DECIMMTM Simulation Examples for Introduction . . . . . . . . . . 14
2 Conductivity Modulation in Semiconductor Structures
Under Breakdown and Injection . . . . . . . . . . . . . . . . . . . 15
2.1 ImportantDefinitions andLimitations . . . . . . . . . . . . . . . 15
2.1.1 Basic Semiconductor Structures . . . . . . . . . . . . . . 15
2.1.2 Conductivity Modulation and Negative
Differential Resistance . . . . . . . . . . . . . . . . . . . 17
2.1.3 Spatial Current Instability, Filamentation, and
Suppression . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Snapback Operation . . . . . . . . . . . . . . . . . . . . 20
2.1.5 Notes to theMethodology of Material Presentation
in This Chapter . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Avalanche Breakdown in Reverse-Biased p–n Structure . . . . . 23
2.2.1 Analytical Description of the Avalanche
Breakdown Phenomenon . . . . . . . . . . . . . . . . . 24
2.2.2 Numerical Analysis of the Avalanche Breakdown
in the p+–p–n+Structure . . . . . . . . . . . . . . . . . . 26
2.3 Double-Avalanche–Injection in p–i–n Structures . . . . . . . . . 30
2.3.1 AnAnalyticalDescription of theEffect . . . . . . . . . . 30
2.3.2 NumericalAnalysis for the p–i–nDiodeStructure . . . . 31
2.4 Avalanche–Injection in Si n+–n–n+DiodeStructure . . . . . . . 33
2.4.1 Analytical Approach . . . . . . . . . . . . . . . . . . . . 34
2.4.2 SimulationAnalysis . . . . . . . . . . . . . . . . . . . . 36
2.5 Conductivity Modulation Instability in n–p–n Diode Structures . 37
2.5.1 Conductivity Modulation in a Floating Base
Region iodeOperationMode . . . . . . . . . . . . . . 37
2.6 Conductivity Modulation in the Triode n–p–n Structure . . . . . 40
2.6.1 The Case of Grounded Base Breakdown
Operation UEB=0(BVCES) . . . . . . . . . . . . . . . 40
2.6.2 The Floating Emitter Case IE =0 . . . . . . . . . . . . . 41
2.6.3 Avalanche–Injection in a Common Emitter
Circuit: The Case of IB<0Regime . . . . . . . . . . . . . 41
2.6.4 Avalanche–Injection in the Common Emitter
Circuit with Positive Base Current IB >0 . . . . . . . . . 47
2.6.5 Avalanche–Injection in the Common Base Circuit . . . . 51
2.7 Avalanche–Injection in PNP Structures . . . . . . . . . . . . . . 52
2.8 Double Injection in Si p–n–p–n Structures . . . . . . . . . . . . 53
2.8.1 EquivalentCircuit . . . . . . . . . . . . . . . . . . . . . 53
2.8.2 Simulation of Conductivity Modulation in
p–n–p–n Structures . . . . . . . . . . . . . . . . . . . . 56
2.9 Spatial Current Instability Phenomena in Semiconductor
Structures with Negative Differential Resistance . . . . . . . . . 59
2.9.1 Current Filamentation at Avalanche–Injection . . . . . . 60
2.9.2 Current Filamentation Effect in Double-
Avalanche–Injection Conductivity Modulation . . . . . . 63
2.9.3 Current Filamentation Effect in the Case of
Double Injection . . . . . . . . . . . . . . . . . . . . . . 66
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
DECIMMTM Simulation Examples for Chapter 2 . . . . . . . . . . . . 68
3 Standard and ESD Devices in Integrated Process Technologies . . 69
3.1 ESD Specifics in Integrated Process Technology . . . . . . . . . 70
3.1.1 Typical DGO CMOS Process with Extended
Voltage Components . . . . . . . . . . . . . . . . . . . . 70
3.1.2 ESD Specific for BCD and BiCMOS Integrated
Process Flow . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2 SafeOperatingArea inESDPulseRegime . . . . . . . . . . . . 87
3.2.1 SOA and Current Instability Boundary in Reliability . . . 88
3.2.2 PulsedSOAforESDRegimes . . . . . . . . . . . . . . . 90
3.2.3 ESD SOA for Typical Devices in BCD Process . . . . . . 92
3.2.4 Instability Boundary and SOA for ESD devices . . . . . . 96
3.2.5 Physical Limitation of ESD Devices. Spatial
ThermalRunaway . . . . . . . . . . . . . . . . . . . . . 98
3.3 Low-VoltageESDDevices inCMOSProcesses . . . . . . . . . 102
3.3.1 Snapback NMOS . . . . . . . . . . . . . . . . . . . . . 103
3.3.2 FOX(TFO)ESDdevice . . . . . . . . . . . . . . . . . . 105
3.3.3 LVTSCRandFOXSCR . . . . . . . . . . . . . . . . . . 109
3.3.4 Low-Voltage Avalanche Diodes . . . . . . . . . . . . . . 111
3.4 ESDDevices inBJTProcesses . . . . . . . . . . . . . . . . . . 114
3.4.1 IntegratedNPNBJTDevices . . . . . . . . . . . . . . . 114
3.4.2 BipolarSCR . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5 High-Voltage ESD Devices in BCD and Extended
VoltageCMOSProcesses . . . . . . . . . . . . . . . . . . . . . 117
3.5.1 LDMOS-SCRandDeMOS-SCRDevices . . . . . . . . . 118
3.5.2 LateralPNPBJTDevices . . . . . . . . . . . . . . . . . 121
3.5.3 High-Voltage Avalanche Diodes . . . . . . . . . . . . . . 126
3.6 DualDirectionDevices . . . . . . . . . . . . . . . . . . . . . . 127
3.6.1 Dual-Direction Device Architecture in CMOS Process . . 128
3.6.2 High-VoltageDual-DirectionDevices . . . . . . . . . . . 131
3.6.3 Dual Direction ESD Devices Based upon Si–Ge
NPNBJTStructure . . . . . . . . . . . . . . . . . . . . 134
3.7 ESD Diodes and Passive Components . . . . . . . . . . . . . . . 139
3.7.1 Forward-Biased ESD Diodes . . . . . . . . . . . . . . . 139
3.7.2 Passives . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
DECIMMTM Simulation Examples for Chapter 3 . . . . . . . . . . . . 148
4 ESD Clamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.1 ActiveNMOSClamp . . . . . . . . . . . . . . . . . . . . . . . 158
4.2 Low-Voltage Clamps with Internal Blocking Junction
Reference or dV/dtTurn-on . . . . . . . . . . . . . . . . . . . . 161
4.2.1 Snapback NMOS Clamps . . . . . . . . . . . . . . . . . 161
4.2.2 Transient-Triggered PMOS Clamp . . . . . . . . . . . . 167
4.2.3 10 V FOX Snapback Device . . . . . . . . . . . . . . . . 169
4.2.4 LVTSCRandFOX-SCRClamps . . . . . . . . . . . . . 171
4.2.5 HighHoldingVoltageLVTSCRClamps . . . . . . . . . 172
4.2.6 Triggering Characteristics Control in SCR Clamps . . . . 176
4.3 Voltage and Current Reference in ESD Clamp . . . . . . . . . . 182
4.3.1 Low-Voltage Clamps in BiCMOS process technology . . 183
4.3.2 NPN Clamps with Voltage Reference . . . . . . . . . . . 185
4.4 High-VoltageESDDevices . . . . . . . . . . . . . . . . . . . . 188
4.4.1 20 V NPN with Blocking Junction Internal Reference . . 189
4.4.2 NPN Clamp with External Lateral Avalanche
Diode Reference . . . . . . . . . . . . . . . . . . . . . . 190
4.4.3 SCR-BasedHigh-VoltageClamp . . . . . . . . . . . . . 190
4.4.4 LateralLPNPClamp . . . . . . . . . . . . . . . . . . . . 190
4.4.5 MixedDevice-CircuitDualModeSolutions . . . . . . . 191
4.5 The Concept of Self-Protection . . . . . . . . . . . . . . . . . . 196
4.5.1 Device-LevelSelf-Protection . . . . . . . . . . . . . . . 196
4.5.2 Array-LevelProtection . . . . . . . . . . . . . . . . . . 198
4.6 ESDProtection ofUltraHighVoltageCircuits . . . . . . . . . . 200
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
DECIMMTM Simulation Examples for Chapter 4 . . . . . . . . . . . . 204 |
|