|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
求书:
COOPERATIVE COMMUNICATIONS HARDWARE, CHANNEL & PHY
Preface xvii
Abbreviations xxi
Functions xxvii
Symbols xxix
1 Introduction 1
1.1 Book Structure 1
1.2 Quick Introduction 2
1.2.1 Channel 2
1.2.2 Typical Gains 3
1.2.3 Canonical Architectures 5
1.3 Application Scenarios 6
1.3.1 Cellular Capacity and Coverage Extension 7
1.3.2 WLAN Capacity and Coverage Extension 8
1.3.3 Vehicle-to-Vehicle Communication 9
1.3.4 Wireless Sensor Networks 9
1.4 Pros and Cons of Cooperation 10
1.4.1 Advantages of Cooperation 11
1.4.2 Disadvantages of Cooperation 11
1.4.3 System Tradeoffs 12
1.5 Cooperative Performance Bounds 13
1.5.1 Capacity Gains 13
1.5.1.1 Ergodic Channel 14
1.5.1.2 Capacity Gains 15
1.5.2 Rate Outage Gains 16
1.5.2.1 Nonergodic Channel 17
1.5.2.2 Rate Outage Gains 18
1.5.3 Diversity-Multiplexing Tradeoff 18
1.6 Definitions and Terminology 20
1.6.1 Relaying Node 21
1.6.1.1 Node Behaviors 21
1.6.1.2 Transparent Relaying Protocols 22
1.6.1.3 Regenerative Relaying Protocols 23
1.6.2 Multiple Access Resolution 25
1.6.2.1 Duplexing Methods 25
1.6.2.2 Multiple Access Protocols 27
1.6.2.3 Resource Allocation Strategies 29
1.6.2.4 Typical Access Configurations 30
1.6.3 Cooperative Networking Aspects 32
1.6.3.1 Canonical Information Flows 33
1.6.3.2 Important Design Parameters 34
1.6.4 System Analysis and Synthesis 35
1.6.4.1 Performance Analysis 35
1.6.4.2 System Synthesis 36
1.7 Background and Milestones 37
1.7.1 First Key Milestones 37
1.7.2 Supportive Relaying 38
1.7.3 Cooperative Relaying 39
1.7.4 Space–Time Relaying 39
1.8 Concluding Remarks 40
2 Wireless Relay Channel 43
2.1 Introductory Note 43
2.1.1 Chapter Contents 43
2.1.2 Choice of Notation 43
2.2 General Characteristics and Trends 44
2.2.1 Propagation Principles 44
2.2.1.1 Wave Properties 44
2.2.1.2 Propagation Mechanisms 45
2.2.1.3 Signal Distortions 47
2.2.2 Propagation Modeling 49
2.2.2.1 Pathloss 49
2.2.2.2 Shadowing 50
2.2.2.3 Fading 52
2.2.3 Channel Modeling 52
2.2.3.1 Important Parameters 52
2.2.3.2 Selectivity versus Non-Selectivity 53
2.2.3.3 Example Fading Cases 55
2.2.4 Quick Introduction to Regenerative Relay Channels 56
2.2.4.1 System Assumptions 56
2.2.4.2 Key Channel Parameters 57
2.2.4.3 Impact on Fading Behavior 58
2.2.4.4 Impact on End-to-End Performance 59
2.2.5 Quick Introduction to Transparent Relay Channels 59
2.2.5.1 System Assumptions 60
2.2.5.2 Key Channel Parameters 61
2.2.5.3 Impact on Fading Behavior 62
2.2.5.4 Impact on End-to-End Performance 63
2.3 Regenerative Relaying Channel 64
2.3.1 Propagation Modeling 64
2.3.1.1 Pathloss 64
2.3.1.2 Shadowing 65
2.3.1.3 Fading 66
2.3.2 Envelope and Power Fading Statistics 67
2.3.2.1 PDF Transformation 67
2.3.2.2 Fading Distributions 67
2.3.2.3 Relationship with SNR 69
2.3.3 Temporal Fading Characteristics 69
2.3.3.1 System Assumptions 70
2.3.3.2 Canonical Scenario 72
2.3.3.3 Nonisotropic Scattering Scenario 75
2.3.3.4 Ricean Fading Scenario 76
2.3.4 Spatial–Temporal Fading Characteristics 79
2.3.4.1 System Assumptions 79
2.3.4.2 Canonical Scenario 82
2.3.4.3 Case Studies 85
2.3.5 Spectral–Spatial–Temporal Fading Characteristics 87
2.3.5.1 System Assumptions 87
2.3.5.2 Canonical Scenario 91
2.3.5.3 Case Studies 98
2.3.6 Simulating Regenerative Fading Channels 98
2.3.6.1 Typical Modeling Approaches 99
2.3.6.2 MIMO Narrowband Relay Channels 100
2.3.6.3 MIMO Wideband Relay Channels 102
2.3.7 Measurements and Empirical Models 105
2.3.7.1 Mobile-to-Mobile Measurement Campaigns 106
2.3.7.2 Empirical Outdoors Relay Propagation Models 108
2.3.7.3 Empirical Indoors Relay Propagation Model 109
2.3.8 Estimating Regenerative Fading Channels 110
2.4 Transparent Relaying Channel 111
2.4.1 Propagation Modeling 111
2.4.1.1 Pathloss 111
2.4.1.2 Shadowing 113
2.4.1.3 Fading 114
2.4.2 Envelope and Power Fading Statistics 115
2.4.2.1 Cascaded Fading Distributions with Constant Amplification 115
2.4.2.2 Cascaded Fading Distributions with Variable Amplification 118
2.4.2.3 Relationship With SNR 120
2.4.3 Temporal Fading Characteristics 121
2.4.3.1 System Assumptions 121
2.4.3.2 Canonical Scenario 124
2.4.3.3 Nonisotropic Scattering Scenario 126
2.4.3.4 Nakagami Fading Scenario 127
2.4.4 Spatial–Temporal Fading Characteristics 128
2.4.4.1 System Assumptions 129
2.4.4.2 Canonical Scenario 130
2.4.4.3 Case Studies 131
2.4.5 Spectral–Spatial–Temporal Fading Characteristics 131
2.4.6 Simulating Transparent Fading Channels 133
2.4.7 Measurements and Empirical Models 133
2.4.8 Estimating Transparent Fading Channels 133
2.5 Distributed MIMO Channel 135
2.5.1 Problem Reduction 136
2.5.2 Main Design Criteria 137
2.5.3 Macro Diversity Gains 137
2.6 Concluding Remarks 137
3 Transparent Relaying Techniques 141
3.1 Introductory Note 141
3.1.1 Chapter Contents 141
3.1.2 Choice of Notation 141
3.2 Transparent Relaying Protocols 142
3.2.1 Single-Branch Dual-Hop AF 143
3.2.1.1 System Assumptions 143
3.2.1.2 Rayleigh Fading Channels 143
3.2.1.3 Nakagami Fading Channels 145
3.2.2 Single-Branch Multihop AF 147
3.2.2.1 System Assumptions 147
3.2.2.2 Rayleigh Fading Channels 147
3.2.2.3 Nakagami Fading Channels 148
3.2.3 Multibranch Dual-Hop AF 149
3.2.3.1 System Assumptions 149
3.2.3.2 Blind and Semiblind Relays 150
3.2.3.3 CSI-Assisted Relays 150
3.2.4 Multibranch Multihop AF 151
3.2.4.1 System Assumptions 152
3.2.4.2 SISO Topologies 152
3.2.4.3 MIMO Topologies 154
3.3 Transparent Space–Time Processing 155
3.3.1 Distributed Space–Time Block Codes 156
3.3.1.1 Distributed Linear Dispersion Space–Time Codes 156
3.3.1.2 Chernoff Bound of General Communication System 159
3.3.1.3 PEP Upper Bound of the DLD-STC Scheme 160
3.3.2 Distributed Space–Time Trellis Codes 162
3.3.2.1 System Assumptions 162
3.3.2.2 Generic Design Criteria 163
3.3.2.3 Protocol-Specific Design Criteria 166
3.3.3 Distributed Spatial Multiplexing 168
3.3.3.1 System Model 169
3.3.3.2 Zero Forcing at the Source and Relay Nodes 171
3.3.3.3 Zero Forcing at the Relay Nodes Only 173
3.3.3.4 Zero Forcing at the Relay and Destination Nodes 176
3.3.3.5 Zero Forcing at the Destination Node Only 179
3.3.4 Distributed Beamforming 181
3.3.4.1 System Model 182
3.3.4.2 Design under Global Sum Power Constraint 183
3.3.4.3 Design under Individual Relay Power Constraint 185
3.3.4.4 Simulation Results 189
3.4 Distributed System Optimization 191
3.4.1 Distributed Adaptive Power Allocation 191
3.4.1.1 System Model 192
3.4.1.2 Distributed Adaptive Power Allocation 194
3.4.1.3 Simulation Results 196
3.4.2 Distributed Relay Selection 196
3.4.2.1 System Model 196
3.4.2.2 Performance Analysis 198
3.4.2.3 Simulation Results 204
3.5 Concluding Remarks 204
4 Regenerative Relaying Techniques 209
4.1 Introductory Note 209
4.1.1 Chapter Contents 209
4.1.2 Choice of Notation 209
4.2 Regenerative Relay Protocols 210
4.2.1 Decode and Forward 211
4.2.1.1 System Model 211
4.2.1.2 Equivalent Model of S-R-D Link 212
4.2.1.3 Simulation Results 214
4.2.2 Compress and Forward 215
4.2.2.1 CF based on Wyner–Ziv Coding 216
4.2.2.2 CF based on Slepian–Wolf Coding 218
4.2.3 Soft Information Relaying 219
4.2.3.1 SIR Based on Soft Symbol Estimation 221
4.2.3.2 SIR Based on Log-Likelihood Ratio 232
4.2.3.3 Mean Square Errors of Signal Estimation at Relay 234
4.2.3.4 Simulation Results 234
4.2.4 Adaptive Relaying 238
4.2.4.1 Adaptive Relay Protocol 238
4.2.4.2 Performance Analysis of ARP 240
4.2.4.3 Performance Evaluations 243
4.2.5 Selective Decode and Forward 243
4.3 Distributed Space–Time Coding 246
4.3.1 Distributed Space–Time Block Coding 247
4.3.1.1 System Model 248
4.3.1.2 Error Rates for Distributed STBCs 250
4.3.1.3 Maximum Throughput for End-to-End Transmission 254
4.3.1.4 Full Cooperation at Each Stage 255
4.3.1.5 Partial Cooperation at Each Stage 260
4.3.2 Distributed Space–Time Trellis Coding 264
4.3.2.1 Generator Polynomial Description 264
4.3.2.2 DSTTC with Decode-and-Forward Relaying 266
4.3.2.3 DSTTC with Estimate-and-Forward Relaying 276
4.3.3 Distributed Turbo Coding 282
4.3.3.1 Turbo Encoder Structure 282
4.3.3.2 Distributed Turbo Coding with Perfect DF 283
4.3.3.3 Distributed Turbo Coding with Soft Information Relaying 288
4.3.3.4 Generalized Distributed Turbo Coding 295
4.4 Distributed Network Coding 301
4.4.1 Distributed Network–Channel Coding 301
4.4.1.1 Introduction to LDPC Codes 304
4.4.1.2 Adaptive Network Coded Cooperation 306
4.4.1.3 Simulation Results 312
4.4.2 Network Coding Division Multiplexing 312
4.4.2.1 System Model 314
4.4.2.2 Network Coding Division Multiplexing 316
4.4.2.3 Simulation Results 318
4.5 Concluding Remarks 318
5 Hardware Issues 321
5.1 Introductory Note 321
5.1.1 Chapter Contents 321
5.1.2 Choice of Notation 321
5.2 Analog Hardware Transceivers 322
5.2.1 Important Hardware Components 322
5.2.2 Analog Relaying Architectures 323
5.3 Digital Hardware Transceivers 326
5.3.1 Important Hardware Components 326
5.3.2 Digital Relaying Architectures 327
5.4 Architectural Comparisons 328
5.4.1 Duplex, Relay and Access Protocols 328
5.4.2 Transceiver Complexity 329
5.4.3 Cost Estimates 330
5.5 Complexity of 3G UMTS Voice/HSDPA Relay 332
5.5.1 System Assumptions 333
5.5.1.1 Choice of Scenarios 333
5.5.1.2 Choice of Access Method 333
5.5.1.3 Choice of Link Layer 334
5.5.1.4 Digital Modem Design 334
5.5.2 Algorithmic Complexity 337
5.5.2.1 RRC Matched Filter 337
5.5.2.2 Channel Acquisition 338
5.5.2.3 Channel Estimation 340
5.5.2.4 MRC and MPIC Symbol Detectors 341
5.5.2.5 Outer Modem 344
5.5.3 Power Consumption 346
5.5.3.1 RF Front-End Consumption 346
5.5.3.2 Digital Baseband Consumption 348
5.5.3.3 Higher Layers and Peripheral Hardware 349
5.5.4 Case Studies 349
5.5.4.1 Supportive AF with Analog Hardware 349
5.5.4.2 Supportive AF with Digital Hardware 350
5.5.4.3 Supportive DF with Digital Hardware 351
5.5.4.4 Cooperative DF with Digital Hardware 353
5.6 Complexity of LTE/WiMAX Relay 354
5.6.1 LTE versus WiMAX 354
5.6.1.1 Background 354
5.6.1.2 Commonalities 355
5.6.1.3 Differences 355
5.6.2 System Assumptions 356
5.6.2.1 Choice of Scenarios 356
5.6.2.2 Choice of Access Method 356
5.6.2.3 Choice of Link Layer 357
5.6.2.4 Digital Modem Design 359
5.6.3 Algorithmic Complexity 360
5.6.3.1 FFT and IFFT Operations 360
5.6.3.2 Channel Estimation 360
5.6.3.3 Alamouti Space–Time Block Decoding 361
5.6.3.4 Turbo Decoding 361
5.6.4 Power Consumption 361
5.6.4.1 RF Front-End Consumption 361
5.6.4.2 Digital Baseband Consumption 362
5.6.4.3 Higher Layers and Peripheral Hardware 363
5.6.5 Case Studies 363
5.6.5.1 Supportive AF with Digital Hardware 363
5.6.5.2 Supportive DF with Digital Hardware 364
5.6.5.3 Cooperative DF with Digital Hardware 364
5.7 Hardware Demonstrators 365
5.7.1 MIT’s Commodity Hardware Demonstrator 365
5.7.2 ETH’s RACooN Demonstrator 368
5.7.3 Easy-C Project 371
5.8 Concluding Remarks 374
6 Conclusions and Outlook 377
6.1 Contributions 377
6.1.1 Chapter 1 377
6.1.2 Chapter 2 378
6.1.3 Chapter 3 380
6.1.4 Chapter 4 382
6.1.5 Chapter 5 384
6.2 Real-World Impairments 385
6.2.1 Going Wideband 385
6.2.2 Impact of Shadowing 386
6.2.3 Impact of Interference 386
6.2.4 Inclusion of Channel Coder 387
6.2.5 Systems in Outage 389
6.2.6 Asymptotics 390
6.3 Open Research Problems 391
6.3.1 Taxonomy 391
6.3.2 Wireless Channel 391
6.3.3 Transparent PHY Techniques 392
6.3.4 Regenerative PHY Techniques 393
6.3.5 Hardware Considerations 394
6.4 Business Challenges 395
References 397
哪位仁兄有该书电子版,还请共享一下,共同进步啊! |
|