|
发表于 2012-12-28 11:34:33
|
显示全部楼层
Types of cornersOne naming convention for process corners is to use two-letter designators, where the first letter refers to the N-channel MOSFET (NMOS) corner, and the second letter refers to the P channel (PMOS) corner. In this naming convention, three corners exist: typical, fast and slow. Fast and slow corners exhibit carrier mobilities that are higher and lower than normal, respectively. For example, a corner designated as FS denotes fast NFETs and slow PFETs.
There are therefore five possible corners: typical-typical (TT) (not really a corner of an n vs. p mobility graph, but called a corner, anyway), fast-fast (FF), slow-slow (SS), fast-slow (FS), and slow-fast (SF). The first three corners (TT, FF, SS) are called even corners, because both types of devices are affected evenly, and generally do not adversely affect the logical correctness of the circuit. The resulting devices can function at slower or faster clock frequencies, and are often binned as such. The last two corners (FS, SF) are called "skewed" corners, and are cause for concern. This is because one type of FET will switch much faster than the other, and this form of imbalanced switching can cause one edge of the output to have much less slew than the other edge. Latching devices may then record incorrect values in the logic chain.
In addition to the FETs themselves, there are more on-chip variation (OCV) effects that manifest themselves at smaller technology nodes. These include process, voltage and temperature (PVT) variation effects on on-chip interconnect, as well as via structures.
摘自wiki |
|