|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
用sentaurus的optical generation像对pin二极管施加一个脉冲光照,需要强度大一些,由于直接给intensity定义一个大的数字,如1000,很难收敛,所以我选择先对其静态加上去,然后再进行瞬态仿真,但这个时候,在进行瞬态仿真0时刻的时候,就会有一个很大的电流,想问问各位大佬,这个模型的运作过程是什么样子的呀,不应该是在Timedependece的那个时间下才会有光照吗?为什么intensity加完也会有大电流,以及如果想在0时刻没有大电流的情况下,相对这个器件进行X射线脉冲辐照仿真,我可以怎么做?以下是我的sdevice代码,跑起来非常慢,顺便问问各位大佬怎么样可以加速仿真
Electrode {
{ name="P1_contact" Voltage=0 }
{ name="N1_contact" Voltage=0 }
}
File {
Grid = "@tdr@"
Piezo= "@tdr@"
Parameters = "@parameter@"
Current = "@plot@"
Plot = "@tdrdat@"
Output= "@log@"
ACExtract= "@acplot@"
NewtonPlot = "n@node@_Newton_%d_des.tdr"
}
CurrentPlot{
ModelParameter="Intensity"
}
Physics {
Fermi
Mobility (
Enormal
HighFieldSaturation
Phumob
)
Recombination (
SRH(DopingDependence)
Avalanche
)
HeteroInterface
Optics (
ComplexRefractiveIndex (WavelengthDep(Real Imag))
OpticalGeneration (
QuantumYield(StepFunction(EffectiveBandgap)) * generated carriers/photon, default: 1
ComputeFromMonochromaticSource(
TimeDependence(
WaveTime= (18e-9,20e-9)
WaveTSigma= 1e-9
)
)
) * generated carriers/photon, default: 1
Excitation (
Theta= 0 * Normal incidence
Polarization= 0.5 * Unpolarized light
Wavelength= @Wavelength@ *[um]
Intensity= 1e-3 * Incident light intensity [W/cm2]
Window(
Origin= (0,0,0)
Line (
X1= 0
X2= 300
) *end Line
) * end window
) * end Excitation
OpticalSolver (
RayTracing (
RayDistribution(
Mode= AutoPopulate
NumberOfRays= 300 * Number of rays in the illumination window
)
CompactMemoryOption
DepthLimit= 1000 * Stop tracing a ray after passing through more than x material boundaries
MinIntensity= 1e-5 * Stop tracing a ray when its intensity becomes less than x times the original intensity
)
) * end OpticalSolver
) * end Optics
} * end Physics
Physics(MaterialInterface="Silicon/SiO2"){
charge(conc=@InterfaceCharge@)
}
Plot{
eDensity hDensity
eCurrent/Vector hCurrent/Vector TotalCurrent/Vector
ElectricField/Vector
eIonIntegral
hIonIntegral
MeanIonIntegral
Potential
eQuasiFermi
emobility hmobility
Doping
SpaceCharge DonorConcentration AcceptorConcentration
BandGap
SRH Auger Avalanche
eAvalanche hAvalanche
eVelocity hVelocity
BandGapNarrowing
ElectronAffinity
ConductionBandEnergy ValenceBandEnergy
eQuantumPotential hQuantumPotential
*- Optical Generation
ComplexRefractiveIndex QuantumYield
OpticalIntensity AbsorbedPhotonDensity OpticalGeneration
}
Math {
Extrapolate
Derivatives
RelErrControl
DirectCurrent
CNormPrint
NotDamped=80
Iterations=50
NewtonPlot(Error MinError Residual)
ExitOnFailure
}
Solve {
#-initial solution:
coupled {Poisson}
coupled {Electron Hole }
coupled(Iterations=100) {Poisson Electron Hole }
#-ramp P1
Quasistationary (
InitialStep= 1e-4 Increment= 1.41
MinStep= 1e-20 MaxStep= 0.2
Goal { Name="N1_contact" Voltage=@<-VP2>@}
)
{ Coupled{ Poisson Electron Hole} }
NewCurrentPrefix="intensity"
*ramp through intensity
Quasistationary (
DoZero
InitialStep = 1e-5 MaxStep = 0.1 Minstep = 1e-15
Goal { modelParameter="Intensity" value=@intensity@ }
) {
Coupled{ Poisson Electron Hole}
}
NewCurrentPrefix="optical"
Transient (
InitialTime= 0 FinalTime= 38e-9
InitialStep= 1e-14 Increment= 1.41 Decrement= 1.3
MinStep= 1e-30 MaxStep= 1e-9
){
Coupled { Poisson Electron Hole}
}
}
|
|