Finfet给芯片设计者带来的新问题: 不仅如此,芯片的设计者们也会遇到一些新问题。在Finfet设计的电路中,鳍片的宽度将会是电路中最小的制程尺寸参数。在目前的光刻技术条件下,为了形成鳍片结构,就必须使用双重成像技术(具体点说,很可能是采用SADP自对准双重成像工艺)。而据Schuegraf介绍,双重成像技术的实现要求芯片设计者在设计芯片时采用非常严格的设计准则。Intel器件研发部门的经理MikeMayberry则称:“大部分设计准则都是为了改善对光刻工艺的兼容性而设置的。一旦你学会如何设计22nm节点电路Layout,那么在面对三栅时你只需要注意留心少量专设的设计准则即可。” 对电路设计者而言,Finfet技术也会带来一些变化。其中最明显的变化之一是,在试图增大管子的驱动能力时,过去简单增加线路宽度的方法在三栅中已不再适用,Finfet器件中鳍片的高度和宽度必须保持不变,而以增加鳍片数量的方法,来增加器件的驱动能力。这是由于芯片中所有鳍片的高度尺寸都必须由同一次抛光工序来进行定义,无法对个别鳍片的高度进行拔高或降低处理。 而鳍片的宽度尺寸也有类似的情形。Dixit介绍说,鳍宽无法自由调节的原因并不仅是由于光刻技术方面的限制,鳍宽的增加还会影响到MOSFET门限电压的变化.如果你试图增加鳍片的宽度来增加器件的驱动电流,那么器件的门限电压也会发生改变。 反过来看,这也意味着在Finfet的制造过程中必须保证鳍片的宽度和高度必须保持一致, 否则便会对器件的门限电压等性能参数造成影响,导致电路中各个晶体管的性能参数彼此差异过大。 要增加器件的驱动能力,你只能采用增加并联的鳍片数量的方法来达到目的。而由于每个鳍片传输的电流是一个固定值,这也意味着器件驱动能力只能以这一定值为单位进行增减,这对电路设计者,尤其是一些定制型模拟电路的设计者而言显然是一个令人不快的限制。不过Intel看起来似乎并没有因此而感到担心,他们表示:“我们已经针对开关型和放大器型两种应用,对我们的三栅电路进行了调整。因此我们认为只有在极少数的情况下,才需要对电路设计进行调整。” 相比之下,其它的业内专家在这方面的态度则显得悲观许多,比如IMEC组织的执行副总裁LudoDeferm就表示说:“要得到较高的驱动电流,你必须将多个鳍片并联在一起,这就需要在多个Finfet之间设置互联线路。但是在高频条件下工作时,由互连线造成的电路电阻增加则会影响到电路的性能。”
http://blog.iccourt.com/process/168.html
|