在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 3114|回复: 12

[资料] Analog IC Placement Generation via Neural Networks from Unlabeled Data

[复制链接]
发表于 2022-2-25 19:15:53 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x

Analog IC Placement Generation via Neural Networks from Unlabeled Data
  • António Gusmão
  • Nuno Horta
  • Nuno Lourenço
  • Ricardo Martins


  • Describes the advances achieved in the field of machine learning and electronic design automation for analog IC
  • Presents innovative research on the use of artificial neural networks (ANNs)
  • Details the optimal description of the input/output data relation



Introduction[size=1.7]In this book, innovative research using artificial neural networks (ANNs) is conducted to automate the placement task in analog integrated circuit layout design, by creating a generalized model that can generate valid layouts at push-button speed. Further, it exploits ANNs’ generalization and push-button speed prediction (once fully trained) capabilities, and details the optimal description of the input/output data relation. The description developed here is chiefly reflected in two of the system’s characteristics: the shape of the input data and the minimized loss function. In order to address the latter, abstract and segmented descriptions of both the input data and the objective behavior are developed, which allow the model to identify, in newer scenarios, sub-blocks which can be found in the input data. This approach yields device-level descriptions of the input topology that, for each device, focus on describing its relation to every other device in the topology. By means of these descriptions, an unfamiliar overall topology can be broken down into devices that are subject to the same constraints as a device in one of the training topologies.
In the experimental results chapter, the trained ANNs are used to produce a variety of valid placement solutions even beyond the scope of the training/validation sets, demonstrating the model’s effectiveness in terms of identifying common components between newer topologies and reutilizing the acquired knowledge. Lastly, the methodology used can readily adapt to the given problem’s context (high label production cost), resulting in an efficient, inexpensive and fast model.      

Keywords[size=1.7]Analog IC PlacementArtificial Neural NetworksMachine LearningElectronic Design AutomationANNsAnalog IC Design automationcomputer-aided-design tools


978-3-030-50061-0.jpg

Analog IC Placement Generation via Neural Networks from Unlabeled Data.pdf

5.38 MB, 下载次数: 85 , 下载积分: 资产 -3 信元, 下载支出 3 信元

发表于 2022-2-25 20:45:07 | 显示全部楼层
感谢分享!
发表于 2022-2-25 21:14:56 | 显示全部楼层
kankan
发表于 2022-2-25 21:21:25 | 显示全部楼层
thnaks.have a look.
发表于 2022-2-26 07:17:44 | 显示全部楼层
谢谢分享
发表于 2022-2-26 07:30:38 | 显示全部楼层
感谢分享~~~~
发表于 2022-2-26 10:56:28 | 显示全部楼层
Thank you very much.
发表于 2022-2-26 12:37:59 | 显示全部楼层
谢谢分享
发表于 2022-2-26 12:53:54 | 显示全部楼层
good topic
3q3q
发表于 2022-2-26 13:22:12 | 显示全部楼层
Thanks for sharing.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条


小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-11-9 02:20 , Processed in 0.023520 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表