|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
Design and Analysis of Digitally Modulated Transmitters for Efficiency Enhancement
Contents
Contents ii
List of Figures v
List of Tables ix
I Introduction and Background Studies 1
1 Introduction 2
1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Overview of Eciency Enhancement Techniques at Back-o Output Pow-
ers 7
2.1 Eciency Back-o of Class-A, Class-B and Class-AB PAs . . . . . . . . . . . 7
2.2 Dynamic Current Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Envelope Elimination and Restoration (Polar Modulation) . . . . . . . . . . 15
2.4 Envelope Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Impedance Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Direct Digital Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
II Design of Digitally Modulated TX for Eciency Enhance-
ment 37
3 TX System Level Considerations 38
3.1 Target Application: IEEE 802.11g . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Spectral Purity for Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 TX System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Crest Factor Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Amplitude Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Phase Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Bandwidth Expansion due to Cartesian-to-Polar Conversion . . . . . . . . . 49
3.8 Bandwidth Expansion due to Transmit Predistortion . . . . . . . . . . . . . 52
3.9 Baseband Output Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.10 Filter-First and Filter-Last Architecture . . . . . . . . . . . . . . . . . . . . 55
3.11 Baseband Input Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.12 AM/PM Delay Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.13 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 RF Switching PA Tuned to Limited Harmonics 63
4.1 Ideal Switching PA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.1 Transistor as Voltage Switch or Current Switch? . . . . . . . . . . . . 64
4.1.2 Zero Voltage Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Zero Voltage Slope Switching? . . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 Half-Wave Rectied Sinusoidal Drain Voltage . . . . . . . . . . . . . 65
4.1.5 Ideal Inverse-Class-D/F with Finite Switch On-Resistance . . . . . . 66
4.2 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Number of Harmonics To Be Controlled . . . . . . . . . . . . . . . . 68
4.2.2 Choice of Device Width for Eciency . . . . . . . . . . . . . . . . . . 71
4.2.3 Choice of Another Switching PA Class . . . . . . . . . . . . . . . . . 71
4.3 A Simplied Design Methodology for An RF Switching PA with Limited Con-
trollability Over Harmonic Terminations . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Impedance level and Device Size . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Insensitivity of Eciency and Output Power with Fixed Harmonic
Tuning Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Sensitivity of Eciency and Output Power to Harmonic Tuning Fre-
quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Eect of PA Input Drive Characteristics . . . . . . . . . . . . . . . . . . . . 77
4.5 Capacitive Feedforward for Cascode Parasitics . . . . . . . . . . . . . . . . . 78
4.6 Performance Summary of the Harmonic Tuned Switching PA . . . . . . . . . 80
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Transformer-Based Impedance Modulator 82
5.1 Dual-Section Transformer Power Combiner . . . . . . . . . . . . . . . . . . . 82
5.1.1 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Impedance Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.1 Shorting the Primary . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Eciency Loss in Backo Mode . . . . . . . . . . . . . . . . . . . . . 88
5.3 Timing Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 Open-Loop Phase Modulator 92
6.1 Open-Loop Phase Interpolator Architecture . . . . . . . . . . . . . . . . . . 92
6.2 Phase Resolution and Current-DAC Mismatch . . . . . . . . . . . . . . . . . 92
6.3 Code-to-Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 CML-to-CMOS PM-LO Receiver . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Polar Phase Path Power Overhead . . . . . . . . . . . . . . . . . . . . . . . 96
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7 Baseband Digital Filtering 98
7.1 Choice of Nyquist Filter Type . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Nyquist Filter Specication . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Poly-Phase Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 Poly-Phase Decomposition for Up-Sampling by Zero Insertion . . . . 100
7.3.2 Poly-Phase Decomposition for Up-Sampling by Zero-Order-Hold . . . 103
7.4 Measure of Filter Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5 Filter Synthesis with A Minimum Number of SPT Terms . . . . . . . . . . . 105
7.6 Allocation of Signed Power-of-Two Terms For Filter Coecient Quantization 105
7.7 Pipelining for Synthesis Timing Closure . . . . . . . . . . . . . . . . . . . . . 106
7.8 Amplitude Filter with Waveform Smoother . . . . . . . . . . . . . . . . . . . 107
7.9 Filtering on the Phase Path . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Measurement Results 110
8.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Continuous-Wave Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Modulated Signal Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4 Comparison with State-of-Art . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9 Conclusion 119
9.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Bibliography 122 |
|