|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
作者:恩智浦半导体 GaN器件将填补射频功率器件市场的空白,实现在2011年十亿美金基础上的增长。 据估计,GaN会在市场中起越来越重要的作用,至2014年,射频功率器件市场的30%将会由GaN主导。也就是说,GaN销售量将达到3亿美金。 为实现这一目标,要求主流供应商大力发展GaN技术。在射频领域,我们是第一个同时提供LDMOS和GaN技术的半导体厂家。现阶段,这两种技术在射频功率器件市场上占了90%的市场份额。 这将产生一个问题:为什么GaN可以在市场中取得主导地位?简单来说,相比LDMOS硅技术而言,GaN这一材料技术,大大提升了效率和功率密度。约翰逊优值,表征高频器件的材料适合性优值, 硅技术的约翰逊优值仅为1, GaN最高,为324。而GaAs,约翰逊优值为1.44。肯定地说,GaN是高频器件材料技术上的突破。 为了充分发挥GaN技术的优势,我们在SiC衬底上沉积GaN, 应用低热阻材料进行封装。借助SiC的低热阻特性,通过把GaN热阻降到最低,能充分发挥GaN耐高温的特点—这是射频功率器件的重要参数。 我们即将发布的是高电子迁移率晶体管,能充分发挥GaN固有特性的功率管:高电子漂移速度。这些功率管是耗尽型器件,即器件总是在开启状态,不需要加栅压偏置。负的栅压偏置会把功率器件关断。这一负压偏置并不容易设计,但我们不仅提供器件,还提供解决方案,我们已有参考偏置电路,可以在器件的设计过程提供给客户。 两种材料的混合 从合成半导体角度, 意识到现在我们所讨论的是两种材料(SiC和GaN)的混合非常重要。SiC用作衬底,充分发挥了这一材质优良的温度传导性。GaN用作结,提高了效率和功率密度,另一方面也把频率提高到了LDMOS不能达到的范围。 在射频功率器件中,虽然是水平沟道,但电流会从衬底流向源极。因此,需要降低LDMOS器件衬底的阻抗。多数供应商用硅衬底制作8英寸(200mm)的晶圆。相反,很少供应商应用SiC材质,使用的供应商也正在由3英寸向4英寸的转化过程中。因此,现阶段SiC成本较高。但是这一成本提高,在性能优势上增加的优势更大:温度传导性5倍提高,电气失效方面9倍以上的提高? 在GaN外延层上构建结区,是GaN这一异质结构器件的特点,带来了电子漂移速度和击穿场强方面的优势。最大电子漂移速度(表征电子移动性的另一参数)为硅材质的三倍, 结果是更的低Rds(on)和更小的栅长,因此也能工作在更高的功率密度下。 GaN更好的电子移动性和击穿场强,给需要低阻抗、高电压的应用市场开辟了新道路。在功率器件领域,我们将看到,比使用硅技术的LDMOS击穿场强高两倍,Vds偏置电压更高的GaN技术将得到应用。GaN的另外一个优势是能承受更高的温度。我们GaN 器件额定的最高工作温度是250 ℃, 而LDOMS为225℃。
GaN作为射频器件材料的优势是突出的,毋庸置疑的。需要证明这一点,请参考表1中,LDMOS和GaN 两种材料的效率、功率密度对比 |
|