在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
EETOP诚邀模拟IC相关培训讲师 创芯人才网--重磅上线啦!
查看: 24265|回复: 145

EMC经典:Introduction to electromagnetic compatibility (2006)

[复制链接]
发表于 2006-11-14 20:35:29 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
Library of Congress Cataloging-in-Publication Data:
Paul, Clayton R.
Introduction to electromagnetic compatibility / Clayton R. Paul.--2nd ed.
p. cm. “Wiley-Interscience.”
2006新版
本书被誉为EMC经典
共一千零一十三页
目录如下
1 Introduction to Electromagnetic Compatibility (EMC) 1
1.1 Aspects of EMC 3
1.2 History of EMC 10
1.3 Examples 12
1.4 Electrical Dimensions and Waves 14
1.5 Decibels and Common EMC Units 23
1.5.1 Power Loss in Cables 32
1.5.2 Signal Source Specification 37
Problems 43
References 48
2 EMC Requirements for Electronic Systems 49
2.1 Governmental Requirements 50
2.1.1 Requirements for Commercial Products Marketed
in the United States 50
2.1.2 Requirements for Commercial Products Marketed
outside the United States 55
2.1.3 Requirements for Military Products Marketed in the
United States 60
2.1.4 Measurement of Emissions for Verification of Compliance 62
2.1.4.1 Radiated Emissions 64
2.1.4.2 Conducted Emissions 67
2.1.5 Typical Product Emissions 72
2.1.6 A Simple Example to Illustrate the Difficulty in Meeting
the Regulatory Limits 78
vii
2.2 Additional Product Requirements 79
2.2.1 Radiated Susceptibility (Immunity) 81
2.2.2 Conducted Susceptibility (Immunity) 81
2.2.3 Electrostatic Discharge (ESD) 81
2.2.4 Requirements for Commercial Aircraft 82
2.2.5 Requirements for Commercial Vehicles 82
2.3 Design Constraints for Products 82
2.4 Advantages of EMC Design 84
Problems 86
References 89
3 Signal Spectra—the Relationship between the Time Domain and
the Frequency Domain 91
3.1 Periodic Signals 91
3.1.1 The Fourier Series Representation of Periodic Signals 94
3.1.2 Response of Linear Systems to Periodic Input Signals 104
3.1.3 Important Computational Techniques 111
3.2 Spectra of Digital Waveforms 118
3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
3.2.2 Spectral Bounds for Trapezoidal Waveforms 122
3.2.2.1 Effect of Rise/Falltime on Spectral Content 123
3.2.2.2 Bandwidth of Digital Waveforms 132
3.2.2.3 Effect of Repetition Rate and Duty Cycle 136
3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
3.2.3 Use of Spectral Bounds in Computing Bounds on the
Output Spectrum of a Linear System 140
3.3 Spectrum Analyzers 142
3.3.1 Basic Principles 142
3.3.2 Peak versus Quasi-Peak versus Average 146
3.4 Representation of Nonperiodic Waveforms 148
3.4.1 The Fourier Transform 148
3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
3.5 Representation of Random (Data) Signals 151
3.6 Use of SPICE (PSPICE) In Fourier Analysis 155
Problems 167
References 175
4 Transmission Lines and Signal Integrity 177
4.1 The Transmission-Line Equations 181
4.2 The Per-Unit-Length Parameters 184
4.2.1 Wire-Type Structures 186
viii CONTENTS
4.2.2 Printed Circuit Board (PCB) Structures 199
4.3 The Time-Domain Solution 204
4.3.1 Graphical Solutions 204
4.3.2 The SPICE Model 218
4.4 High-Speed Digital Interconnects and Signal Integrity 225
4.4.1 Effect of Terminations on the Line Waveforms 230
4.4.1.1 Effect of Capacitive Terminations 233
4.4.1.2 Effect of Inductive Terminations 236
4.4.2 Matching Schemes for Signal Integrity 238
4.4.3 When Does the Line Not Matter, i.e., When is Matching
Not Required? 244
4.4.4 Effects of Line Discontinuities 247
4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
4.5.1 Voltage and Current as Functions of Position 261
4.5.2 Power Flow 269
4.5.3 Inclusion of Losses 270
4.5.4 Effect of Losses on Signal Integrity 273
4.6 Lumped-Circuit Approximate Models 283
Problems 287
References 297
5 Nonideal Behavior of Components 299
5.1 Wires 300
5.1.1 Resistance and Internal Inductance of Wires 304
5.1.2 External Inductance and Capacitance of Parallel Wires 308
5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
5.2 Printed Circuit Board (PCB) Lands 312
5.3 Effect of Component Leads 315
5.4 Resistors 317
5.5 Capacitors 325
5.6 Inductors 336
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
5.8 Ferrite Beads 343
5.9 Common-Mode Chokes 346
5.10 Electromechanical Devices 352
5.10.1 DC Motors 352
5.10.2 Stepper Motors 355
5.10.3 AC Motors 355
5.10.4 Solenoids 356
5.11 Digital Circuit Devices 357
5.12 Effect of Component Variability 358
5.13 Mechanical Switches 359
5.13.1 Arcing at Switch Contacts 360
CONTENTS ix
5.13.2 The Showering Arc 363
5.13.3 Arc Suppression 364
Problems 369
References 375
6 Conducted Emissions and Susceptibility 377
6.1 Measurement of Conducted Emissions 378
6.1.1 The Line Impedance Stabilization Network (LISN) 379
6.1.2 Common- and Differential-Mode Currents Again 381
6.2 Power Supply Filters 385
6.2.1 Basic Properties of Filters 385
6.2.2 A Generic Power Supply Filter Topology 388
6.2.3 Effect of Filter Elements on Common- and
Differential-Mode Currents 390
6.2.4 Separation of Conducted Emissions into Commonand
Differential-Mode Components for
Diagnostic Purposes 396
6.3 Power Supplies 401
6.3.1 Linear Power Supplies 405
6.3.2 Switched-Mode Power Supplies (SMPS) 406
6.3.3 Effect of Power Supply Components on Conducted
Emissions 409
6.4 Power Supply and Filter Placement 414
6.5 Conducted Susceptibility 416
Problems 416
References 419
7 Antennas 421
7.1 Elemental Dipole Antennas 421
7.1.1 The Electric (Hertzian) Dipole 422
7.1.2 The Magnetic Dipole (Loop) 426
7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429
7.3 Antenna Arrays 440
7.4 Characterization of Antennas 448
7.4.1 Directivity and Gain 448
7.4.2 Effective Aperture 454
7.4.3 Antenna Factor 456
7.4.4 Effects of Balancing and Baluns 460
7.4.5 Impedance Matching and the Use of Pads 463
7.5 The Friis Transmission Equation 466
7.6 Effects of Reflections 470
7.6.1 The Method of Images 470
x CONTENTS
7.6.2 Normal Incidence of Uniform Plane Waves on Plane,
Material Boundaries 470
7.6.3 Multipath Effects 479
7.7 Broadband Measurment Antennas 486
7.7.1 The Biconical Antenna 487
7.7.2 The Log-Periodic Antenna 490
Problems 494
References 501
8 Radiated Emissions and Susceptibility 503
8.1 Simple Emission Models for Wires and PCB Lands 504
8.1.1 Differential-Mode versus Common-Mode Currents 504
8.1.2 Differential-Mode Current Emission Model 509
8.1.3 Common-Mode Current Emission Model 514
8.1.4 Current Probes 518
8.1.5 Experimental Results 523
8.2 Simple Susceptibility Models for Wires and PCB Lands 533
8.2.1 Experimental Results 544
8.2.2 Shielded Cables and Surface Transfer Impedance 546
Problems 550
References 556
9 Crosstalk 559
9.1 Three-Conductor Transmission Lines and Crosstalk 560
9.2 The Transmission-Line Equations for Lossless Lines 564
9.3 The Per-Unit-Length Parameters 567
9.3.1 Homogeneous versus Inhomogeneous Media 568
9.3.2 Wide-Separation Approximations for Wires 570
9.3.3 Numerical Methods for Other Structures 580
9.3.3.1 Wires with Dielectric Insulations
(Ribbon Cables) 586
9.3.3.2 Rectangular Cross-Section Conductors
(PCB Lands) 590
9.4 The Inductive–Capacitive Coupling Approximate Model 595
9.4.1 Frequency-Domain Inductive-Capacitive Coupling
Model 599
9.4.1.1 Inclusion of Losses: Common-Impedance
Coupling 601
9.4.1.2 Experimental Results 604
9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616
9.4.2.2 Experimental Results 617
CONTENTS xi
9.5 Lumped-Circuit Approximate Models 624
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624
9.6.1 Computed versus Experimental Results for Wires 633
9.6.2 Computed versus Experimental Results for PCBs 640
9.7 Shielded Wires 647
9.7.1 Per-Unit-Length Parameters 648
9.7.2 Inductive and Capacitive Coupling 651
9.7.3 Effect of Shield Grounding 658
9.7.4 Effect of Pigtails 667
9.7.5 Effects of Multiple Shields 669
9.7.6 MTL Model Predictions 675
9.8 Twisted Wires 677
9.8.1 Per-Unit-Length Parameters 681
9.8.2 Inductive and Capacitive Coupling 685
9.8.3 Effects of Twist 689
9.8.4 Effects of Balancing 698
Problems 701
References 710
10 Shielding 713
10.1 Shielding Effectiveness 718
10.2 Shielding Effectiveness: Far-Field Sources 721
10.2.1 Exact Solution 721
10.2.2 Approximate Solution 725
10.2.2.1 Reflection Loss 725
10.2.2.2 Absorption Loss 728
10.2.2.3 Multiple-Reflection Loss 729
10.2.2.4 Total Loss 731
10.3 Shielding Effectiveness: Near-Field Sources 735
10.3.1 Near Field versus Far Field 736
10.3.2 Electric Sources 740
10.3.3 Magnetic Sources 740
10.4 Low-Frequency, Magnetic Field Shielding 742
10.5 Effect of Apertures 745
Problems 750
References 751
11 System Design for EMC 753
11.1 Changing the Way We Think about Electrical Phenomena 758
11.1.1 Nonideal Behavior of Components and the
Hidden Schematic 758
11.1.2 “Electrons Do Not Read Schematics” 763
xii CONTENTS
11.1.3 What Do We Mean by the Term “Shielding”? 766
11.2 What Do We Mean by the Term “Ground”? 768
11.2.1 Safety Ground 771
11.2.2 Signal Ground 774
11.2.3 Ground Bounce and Partial Inductance 775
11.2.3.1 Partial Inductance of Wires 781
11.2.3.2 Partial Inductance of PCB Lands 786
11.2.4 Currents Return to Their Source on the Paths of Lowest
Impedance 787
11.2.5 Utilizing Mutual Inductance and Image Planes to Force
Currents to Return on a Desired Path 793
11.2.6 Single-Point Grounding, Multipoint Grounding, and
Hybrid Grounding 796
11.2.7 Ground Loops and Subsystem Decoupling 802
11.3 Printed Circuit Board (PCB) Design 805
11.3.1 Component Selection 805
11.3.2 Component Speed and Placement 806
11.3.3 Cable I/O Placement and Filtering 808
11.3.4 The Important Ground Grid 810
11.3.5 Power Distribution and Decoupling Capacitors 812
11.3.6 Reduction of Loop Areas 822
11.3.7 Mixed-Signal PCB Partitioning 823
11.4 System Configuration and Design 827
11.4.1 System Enclosures 827
11.4.2 Power Line Filter Placement 828
11.4.3 Interconnection and Number of Printed
Circuit Boards 829
11.4.4 Internal Cable Routing and Connector Placement 831
11.4.5 PCB and Subsystem Placement 832
11.4.6 PCB and Subsystem Decoupling 832
11.4.7 Motor Noise Suppression 832
11.4.8 Electrostatic Discharge (ESD) 834
11.5 Diagnostic Tools 847
11.5.1 The Concept of Dominant Effect in the Diagnosis of
EMC Problems 850
Problem 856
References 857
Appendix A The Phasor Solution Method 859
A.1 Solving Differential Equations for Their Sinusoidal,
Steady-State Solution 859
CONTENTS xiii
A.2 Solving Electric Circuits for Their Sinusoidal,
Steady-State Response 863
Problems 867
References 869
Appendix B The Electromagnetic Field Equations and Waves 871
B.1 Vector Analysis 872
B.2 Maxwell’s Equations 881
B.2.1 Faraday’s Law 881
B.2.2 Ampere’s Law 892
B.2.3 Gauss’ Laws 898
B.2.4 Conservation of Charge 900
B.2.5 Constitutive Parameters of the Medium 900
B.3 Boundary Conditions 902
B.4 Sinusoidal Steady State 907
B.5 Power Flow 909
B.6 Uniform Plane Waves 909
B.6.1 Lossless Media 912
B.6.2 Lossy Media 918
B.6.3 Power Flow 922
B.6.4 Conductors versus Dielectrics 923
B.6.5 Skin Depth 925
B.7 Static (DC) Electromagnetic Field Relations—
a Special Case 927
B.7.1 Maxwell’s Equations for Static (DC) Fields 927
B.7.1.1 Range of Applicability for
Low-Frequency Fields 928
B.7.2 Two-Dimensional Fields and Laplace’s
Equation 928
Problems 930
References 939
Appendix C Computer Codes for Calculating the Per-Unit-Length
(PUL) Parameters and Crosstalk of Multiconductor
Transmission Lines 941
C.1 WIDESEP.FOR for Computing the PUL
Parameter Matrices of Widely Spaced Wires 942
C.2 RIBBON.FOR for Computing the PUL Parameter
Matrices of Ribbon Cables 947
C.3 PCB.FOR for Computing the PUL Parameter
Matrices of Printed Circuit Boards 949
xiv CONTENTS
C.4 MSTRP.FOR for Computing the PUL Parameter
Matrices of Coupled Microstrip Lines 951
C.5 STRPLINE.FOR for Computing the PUL
Parameter Matrices of Coupled Striplines 952
C.6 SPICEMTL.FOR for Computing a SPICE
(PSPICE) Subcircuit Model of a Lossless,
Multiconductor Transmission Line 954
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE)
Subcircuit of a Lumped-Pi Model of a Lossless,
Multiconductor Transmission Line 956
Appendix D A SPICE (PSPICE) Tutorial 959
D.1 Creating the SPICE or PSPICE Program 960
D.2 Circuit Description 961
D.3 Execution Statements 966
D.4 Output Statements 968
D.5 Examples 970
References 974
Index

EMC.part01.rar

1.39 MB, 下载次数: 549 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Part 1 / 5

 楼主| 发表于 2006-11-14 20:37:55 | 显示全部楼层
Introduction to electromagnetic compatibility

EMC.part02.rar

1.39 MB, 下载次数: 495 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Part 2 / 5

 楼主| 发表于 2006-11-14 20:45:39 | 显示全部楼层
Introduction to electromagnetic compatibility

EMC.part03.rar

1.39 MB, 下载次数: 448 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Part 3 / 5

 楼主| 发表于 2006-11-14 20:47:50 | 显示全部楼层
Introduction to electromagnetic compatibility

EMC.part04.rar

1.39 MB, 下载次数: 471 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Part 4 / 5

 楼主| 发表于 2006-11-14 20:49:06 | 显示全部楼层
Introduction to electromagnetic compatibility

EMC.part05.rar

1.35 MB, 下载次数: 467 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Part 5 / 5 完

发表于 2006-11-15 00:10:48 | 显示全部楼层
thanks for your information....
thanks........
发表于 2006-11-15 00:13:20 | 显示全部楼层
thanks for your information....
thanks........
发表于 2006-11-15 14:16:40 | 显示全部楼层
Thanks
发表于 2006-11-15 20:47:30 | 显示全部楼层
thank you
发表于 2006-11-16 10:15:02 | 显示全部楼层
thanks for your information....
thanks........
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条


小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-12-27 17:16 , Processed in 0.034238 second(s), 9 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表