|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
Edited by
Martin D¨ottling, Nokia Siemens Networks, Germany
Werner Mohr, Nokia Siemens Networks, Germany
Afif Osseiran, Ericsson Research, Sweden
2009 copyright
About the Editors xxi
Preface xxv
Acknowledgements xxix
Abbreviations xxxi
List of Contributors xliii
1 Introduction 1
1.1 Development and Status of Mobile and Wireless Communications 1
1.2 Expectations of Data Traffic Growth 3
1.3 Development Towards IMT-Advanced 4
1.4 Global Research Activities 6
1.5 WINNER Project 8
1.6 Future Work 9
References 10
2 Usage Scenarios and Technical Requirements 13
2.1 Introduction 13
2.2 Key Scenario Elements 13
2.2.1 Environment Type and Coverage Range 15
2.2.2 Terminal Type 15
2.2.3 User Density and Traffic Parameters 16
2.2.4 User Mobility 16
2.2.5 Deployment Scenarios 18
2.2.5.1 Wide Area 18
2.2.5.2 Metropolitan Area 19
2.2.5.3 Local Area 19
2.3 Service Classes and Service Requirements 20
2.3.1 Overview of Beyond-3G Applications 20
2.3.2 Requirements for Service Provisioning 20
2.3.3 Mapping of Service Requirements to RAN Requirements 20
2.3.4 Traffic Models 20
2.3.4.1 Internet Applications 22
2.3.4.2 Voice over IP 23
2.3.4.3 Video Telephony 23
2.3.4.4 Streaming 23
2.3.4.5 File Transfer 24
2.3.4.6 Interactive Applications 24
2.4 Requirements for System Capabilities 24
2.4.1 Generalised Mobility Support within WINNER 25
2.4.2 Generalised Mobility Support between WINNER and Legacy Networks 25
2.4.3 Measurement Requirements for the WINNER System 26
2.4.4 Support for QoS Mechanisms and Prioritisation of Flows 28
2.5 Terminal Requirements 28
2.6 Performance Requirements 29
2.6.1 Coverage 30
2.6.2 Data Rate 30
2.6.2.1 Definition of User Throughput 30
2.6.2.2 Peak Data Rate 31
2.6.2.3 Sustainable Data Rate 31
2.6.3 Allowable Error Rate 31
2.6.4 Delay 31
2.6.4.1 Definition of User-Plane Packet Delay 31
2.6.4.2 Achievable User-Plane Packet Delay 32
2.6.5 Spectral Efficiency 32
2.6.6 Maximum Terminal Speed 34
2.7 Spectrum Requirements 34
2.7.1 WINNER Spectrum Range 34
2.7.2 Utilisation of Current Mobile Service Bands 34
2.7.3 Spectrum Fragmentation 34
2.7.4 Coexistence with Other Systems 35
2.7.5 Sharing Spectrum between WINNER RANs 35
2.7.6 Sharing Spectrum between Cell Layers of a WINNER System 35
2.7.7 System Bandwidth 36
2.8 Dependency of Requirements 36
2.9 Conclusion 36
Acknowledgements 37
References 38
3 WINNER II Channel Models 39
3.1 Introduction 39
3.2 Modelling Considerations 40
3.2.1 Propagation Scenarios 40
3.2.1.1 A1: Indoor Office 41
3.2.1.2 B1: Urban Microcell 42
3.2.1.3 B4: Outdoor to Indoor 43
3.2.1.4 C1: Suburban Macrocell 43
3.2.1.5 C2: Urban Macrocell 43
3.2.1.6 D1: Rural Macrocell 43
3.2.1.7 B2 and C3: Bad Urban Conditions 43
3.2.2 Evolution of Channel Models from 2G to 4G 44
3.2.3 Selection of Channel-modelling Approach 46
3.2.4 Modelling Process 47
3.2.5 Network Layout 48
3.2.6 Measurements 50
3.2.6.1 Measurement Tools 50
3.2.6.2 Channel Measurements 55
3.3 Channel-Modelling Approach 59
3.3.1 WINNER Generic Channel Model 63
3.3.1.1 Modelled Parameters 63
3.3.1.2 Correlations Between Large-Scale Parameters 64
3.3.2 Channel Segments, Drops and Time Evolution 68
3.3.3 Nomadic Channel Condition 70
3.4 Channel Models and Parameters 70
3.4.1 Applicability 71
3.4.1.1 Environment Dependence 71
3.4.1.2 Frequency Dependence 71
3.4.2 Generation of Channel Coefficients 71
3.4.3 WINNER Path-loss Models 75
3.4.3.1 Frequency Dependencies of WINNER Path-loss Models 75
3.4.3.2 Transitions Between LOS and NLOS Conditions 77
3.4.4 Values for Generic Channel Models 77
3.5 Channel Model Usage 81
3.5.1 System-level Description 81
3.5.1.1 Coordinate System 81
3.5.1.2 Single User (Handover) Multicell Simulation 81
3.5.1.3 Multi-user Multicell Simulation 84
3.5.2 SPACE–TIME Concept in Simulations 84
3.5.3 Bandwidth and Frequency Dependence 85
3.5.3.1 Frequency Sampling 85
3.5.3.2 Bandwidth Downscaling in the Delay Domain 85
3.5.3.3 Bandwidth Downscaling in the Frequency Domain 85
3.5.3.4 FDD Modelling 86
3.5.4 Approximation of Channel Models 86
3.5.4.1 Reduced Complexity Models 86
3.5.4.2 Comparison of Complexity of Modelling Methods 87
3.6 Conclusion 89
Acknowledgements 90
References 90
4 System Concept and Architecture 93
4.1 Introduction 93
4.2 Design Principles and Main Characteristics 94
4.3 Logical Node Architecture 96
4.3.1 Overview 96
4.3.2 Pool Concept and Micro Mobility 98
4.3.3 Equipment Sharing 101
4.3.4 Multicast and Broadcast Service Support 102
4.3.5 Multiband Transmission from Different BSs 103
4.3.6 Logical Nodes 104
4.3.6.1 Gateway Nodes: GW IPALN and GW CLN 104
4.3.6.2 Base Station Node: BSLN 106
4.3.6.3 Relay Node: RNLN 107
4.3.6.4 User Terminal: UTLN 108
4.3.6.5 RRMserverLN 108
4.3.6.6 SpectrumServerLN 108
4.4 Protocol and Service Architecture 109
4.4.1 Overview 109
4.4.2 Layer 3: Radio Resource Control 110
4.4.3 Layer 2 112
4.4.3.1 IP Convergence Layer 114
4.4.3.2 Radio Link Control Layer 114
4.4.3.3 Medium Access Control Layer 115
4.4.4 Layer 1: Physical 125
4.4.4.1 Control Signalling 126
4.4.4.2 Physical Channels and Mappings to Transport Channels 128
4.4.4.3 Synchronisation Pilots 131
4.5 Conclusion 132
Acknowledgements 132
References 132
5 Modulation and Coding Techniques 135
5.1 Introduction 135
5.2 Basic Modulation and Coding Scheme 136
5.3 Coding Schemes 137
5.3.1 Low-density Parity-check Codes 137
5.3.1.1 Encoding of BLDPC Codes 139
5.3.1.2 Decoding Methods 141
5.3.1.3 Scheduling Algorithms 144
5.3.1.4 Lifting Process of LDPC Codes 145
5.3.1.5 Rate-Compatible Puncturing Codes 146
5.3.1.6 SNR Mismatch Impact on LDPC Codes 149
5.3.2 Duo-Binary Turbo Codes 151
5.3.3 Low-Rate Convolutional Codes for Control Channel 152
5.3.4 Comparison of Coding Schemes 154
5.3.4.1 Performance Comparison 154
5.3.4.2 Performance–Complexity Trade-Off 154
5.3.4.3 Domain of Suitability 157
5.3.4.4 Implementation Issues: Flexibility, Parallelization and Throughput 158
5.4 Link Adaptation 160
5.5 Link Level Aspects of H-ARQ 162
5.5.1 Incremental Redundancy Scheme 162
5.5.2 Throughput and Delay Analysis 163
5.6 Conclusions 165
References 166
6 Link Level Procedures 169
6.1 Introduction 169
6.2 Pilot Design 169
6.2.1 Types of Pilot 171
6.2.2 Reference Pilot Design 172
6.2.2.1 In-band Pilot Patterns 172
6.2.2.2 Uplink Super-Frame Pilot Preamble 177
6.2.2.3 Case Study for the Reference Pilot Design 177
6.2.3 Capacity-Achieving Pilot Design 179
6.3 Channel Estimation 179
6.3.1 Channel Estimation Reference Design 180
6.3.2 Pilot-Aided Channel Estimation 181
6.3.3 Iterative Channel Estimation 182
6.3.3.1 Channel Estimation for Single-Input, Single-Output Scenarios 182
6.3.3.2 Channel Estimation for Multiple-Input, Multiple-Output Scenarios 185
6.3.4 Channel Prediction 190
6.4 Radio Frequency Impairments 192
6.4.1 HPA Non-Linearities 192
6.4.2 Phase Noise 195
6.4.2.1 Phase Noise Model 196
6.4.2.2 Phase Noise Suppression in OFDM with Spatial Multiplexing 196
6.4.2.3 Phase Noise Suppression for DFT-Precoded OFDM (Serial Modulation) 198
6.5 Measurements and Signalling 200
6.6 Link Level Synchronisation 201
6.6.1 Synchronisation Preamble Design 201
6.6.2 Synchronisation in a Licensed Band 202
6.6.2.1 Coarse Symbol Timing Synchronisation 202
6.6.2.2 Frequency Offset Estimation 203
6.6.3 Synchronisation in Shared Spectrum 204
6.7 Network Synchronisation 205
6.7.1 Firefly Synchronisation 205
6.7.1.1 Mathematical Model 206
6.7.1.2 Synchronisation of Coupled Oscillators 206
6.7.1.3 Refractory Period 207
6.7.2 Synchronisation Rules 207
6.7.3 Compensating for Propagation Delays: Timing Advance 209
6.7.4 Imposing a Global Time Reference on Firefly Synchronisation 210
6.8 Conclusion 211
6.8.1 Pilot Design 211
6.8.2 Channel Estimation 211
6.8.3 RF Imperfections 212
6.8.4 Link Layer Synchronisation 212
6.8.5 Self-Organised Network Synchronisation 212
Acknowledgements 213
References 213
7 Advanced Antennas Concept for 4G 219
7.1 Introduction 219
7.2 Multiple Antennas Concept 221
7.2.1 Generic Transmitter 221
7.2.1.1 Per Stream Rate Control 226
7.2.1.2 Space–Time Block Code 227
7.2.1.3 SDMA 228
7.2.2 Control Signalling 228
7.3 Spatial Adaptation 229
7.3.1 Single Stream Per User 230
7.3.2 Multiple Streams Per User 231
7.4 Spatial Schemes 231
7.4.1 Receive Diversity 231
7.4.2 Beamforming 232
7.4.2.1 Signal Model 233
7.4.2.2 Results 235
7.4.3 Diversity and Spatial Multiplexing 237
7.4.4 Beamforming and Spatial Multiplexing 241
7.4.4.1 Clustered Array Structure 243
7.4.4.2 Results 243
7.4.5 Linear MU-MIMO: SMMSE and RBD 247
7.4.5.1 System Models 249
7.4.5.2 Results 250
7.5 Interference Mitigation 250
7.6 Pilots, Feedback and Measurements 253
7.6.1 Pilots 253
7.6.2 Feedback 255
7.6.3 Measurements 257
7.7 MIMO Aspects in Relaying 258
7.7.1 Cooperative Relaying 260
7.7.1.1 Cooperative Diversity Relaying 261
7.7.1.2 Two-Dimensional Cyclic Prefix 262
7.7.2 Distributed Antenna Systems 264
7.7.2.1 Distributed MIMO Configuration 265
7.7.2.2 Performance of Linear MU-MIMO Precoding 266
7.8 Conclusion 269
7.8.1 Beamforming 269
7.8.2 Diversity and Linear Dispersion Codes 270
7.8.3 Multi-User MIMO Precoding 271
7.8.4 Distributed Antenna Systems and Cooperative Relaying 271
Acknowledgements 271
References 271
8 Layer-2 Relays for IMT-Advanced Cellular Networks 277
8.1 Introduction 277
8.1.1 Rationale for Relays in Cellular Networks 277
8.1.2 Organization of this Chapter 280
8.2 Motivation for Layer-2 Relays and Prior Work 280
8.3 Relay-based Deployments 282
8.3.1 RN Deployment Concepts 283
8.3.1.1 Relaying for Coverage Improvement 284
8.3.1.2 Relaying for Capacity Optimization at Outer Cell Regions 285
8.3.1.3 Relaying to Cover Shadowed Areas 285
8.3.2 Sub-cell Capacity of a Relay-enhanced Cell 286
8.3.2.1 Multi-hop Throughput in Cellular Deployment 287
8.3.2.2 Sub-cell Capacity Served by an RN 287
8.3.2.3 Capacity of a Multi-hop Connection under Delay Constraint 289
8.3.3 WINNER Test Scenarios 291
8.3.3.1 Base Urban Coverage Test Scenario 291
8.3.3.2 Metropolitan Area Test Scenario 292
8.3.4 Cost Efficiency of RNs 293
8.4 Design Choices for Relay-based Cellular Networks 295
8.4.1 Half-duplex Saves Costs and Improves Deployment Flexibility 296
8.4.2 Decode-and-Forward Relaying Exploits Adaptive Modulation and Coding 296
8.4.3 Fixed Relays in MCN Assist Fast and Cheap Network Roll-out 296
8.4.4 Flexible Radio Resource Management Adapts to the Environment 297
8.4.4.1 Static Load-based Resource Partitioning 299
8.4.4.2 Dynamic-resource Sharing in Wide Area Deployment with Beamforming 300
8.4.4.3 Soft Frequency Re-use and Static Load-based Resource Partitioning 302
8.4.5 MIMO Techniques Boost Capacity 302
8.4.6 Cooperative Relaying Boosts Performance 304
8.5 System and Network Aspects 306
8.5.1 Relaying by the WINNER MAC Protocol 308
8.5.2 Cell Broadcast and Resource Allocation 308
8.5.3 Radio Resource Partitioning 310
8.5.4 Relay ARQ 311
8.6 System-level Performance Evaluation 312
8.6.1 Scenario and Traffic Modelling 312
8.6.2 System Model 313
8.6.3 Resource Partitioning 315
8.6.4 Uplink Power Control and Resource Allocation 316
8.6.5 Simulation Results 317
8.6.5.1 Baseline Resource Partitioning 318
8.6.5.2 Downlink Performance of Infinite Buffer and Optimum Resource Partitioning 319
8.7 Conclusion 319
Acknowledgements 321
References 321
9 Multiple Access Schemes and Inter-cell Interference Mitigation Techniques 325
9.1 Introduction 325
9.2 Multiple Access Schemes 326
9.2.1 Classic Multiple Access Schemes 326
9.2.1.1 Frequency Division Multiple Access 326
9.2.1.2 Time Division Multiple Access 327
9.2.1.3 Code Division Multiple Access 328
9.2.2 Multi-carrier Multiple Access Schemes 328
9.2.2.1 Orthogonal Frequency Division Multiple Access 328
9.2.2.2 Multi-Carrier Code Division Multiple Access 329
9.2.3 WINNER Multiple Access and Medium Access Control Concept 330
9.2.3.1 Chunk-wise Adaptive TDMA/OFDMA 332
9.2.3.2 Block Interleaved and Block Equidistant Frequency Division
Multiple Access 336
9.2.3.3 Configuration of Non-Frequency-Adaptive Multiple Access Schemes 340
9.2.3.4 Co-existence and Switching 343
9.2.4 MAC Transmission Control 346
9.2.4.1 Transmission Control Sequences for Downlinks 346
9.2.4.2 Transmission Control Sequences for Uplinks 347
9.2.4.3 Transmission and Retransmission Delays 348
9.3 Inter-cell Interference Mitigation Schemes 349
9.3.1 Modelling Inter-cell Interference 350
9.3.1.1 Link-Level Model 350
9.3.1.2 System-Level Model 351
9.3.2 Inter-cell Interference Averaging Techniques 351
9.3.2.1 Inter-cell Interference Cancellation 352
9.3.2.2 Dynamic Channel Allocation and Scheduling 357
9.3.3 Inter-cell Interference Avoidance Techniques 360
9.3.3.1 Resource Management by Restriction of Transmit Power 360
9.3.3.2 Self-adaptive Re-use Partitioning 362
9.3.3.3 Cost-function-based Scheduling 363
9.3.3.4 Simulation Results 364
9.3.4 Inter-cell Interference Mitigation Techniques Based on Smart Antennas 365
9.3.4.1 Beamforming Techniques 365
9.3.4.2 Transmit Diversity Techniques 368
9.3.4.3 Receive Diversity and Interference Suppression Techniques 370
9.3.4.4 Simulation Results 370
9.4 Conclusion 372
Acknowledgements 373
References 373
10 Radio Resource Control and System Level Functions 377
10.1 Introduction 377
10.2 IPCL Layer 378
10.2.1 Transfer of User Data Between IPCL Entities 378
10.2.1.1 IPCL Header Compression 379
10.2.1.2 IPCL Data Ciphering and Ciphering Keys 380
10.2.2 IPCL and Handover 381
10.2.2.1 In-Sequence Delivery of Upper Layer PDUs 382
10.2.2.2 Duplicate Detection of Lower Layer SDUs 382
10.3 Radio Resource Control 383
10.3.1 RRC States 383
10.3.1.1 UT Detached State 383
10.3.1.2 UT Idle State 384
10.3.1.3 UT Active State 384
10.3.2 Mobility Management in Idle Mode 385
10.3.2.1 Paging 385
10.3.2.2 Tracking Area 385
10.3.3 Mobility Management in Active Mode 386
10.3.3.1 Micro Mobility 386
10.3.3.2 Macro Mobility 388
10.3.3.3 Intramode Handover 389
10.3.3.4 Intermode Handover 390
10.3.3.5 Intersystem Handover 392
10.3.3.6 Inter GW Handover and Load Balancing 393
10.3.4 Flow Admission Control 394
10.3.5 Congestion Avoidance Control 396
10.3.5.1 Admission Control: Two-Stage Approach 396
10.3.5.2 Flow Control 401
10.3.6 Load and Congestion Control 404
10.4 Centralised, Distributed and Hybrid RRM Architecture 406
10.4.1 Distributed RRM 406
10.4.2 Centralised RRM 406
10.4.3 Hybrid RRM 407
10.5 System-Level Performance Results 407
10.5.1 Intersystem Handover 407
10.5.2 Intermode Handover 409
10.5.2.1 Simulation Setup 409
10.5.2.2 Intramode and Intermode Handover Algorithms 410
10.5.3 Intermode Handover Results 412
10.5.3.1 Intermode Handover Triggered by Residual Throughput 412
10.5.3.2 Intermode Handover Triggered by UT Velocity 414
10.6 Conclusion 414
Acknowledgements 415
References 416 |
|