在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 5014|回复: 21

Information Theory, Inference, and Learning Algorithms

[复制链接]
发表于 2006-7-30 16:23:29 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

Information Theory,
Inference,
and Learning Algorithms
David J.C. MacKay
mackay@mrao.cam.ac.uk

Information Theory, Inference, and Learning Algorithms.part1.rar

1.76 MB, 下载次数: 32 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2006-7-30 16:24:07 | 显示全部楼层
Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

Information Theory,
Inference,
and Learning Algorithms
David J.C. MacKay
mackay@mrao.cam.ac.uk

Information Theory, Inference, and Learning Algorithms.part2.rar

1.76 MB, 下载次数: 34 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2006-7-30 16:24:43 | 显示全部楼层
Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

Information Theory,
Inference,
and Learning Algorithms
David J.C. MacKay
mackay@mrao.cam.ac.uk

Information Theory, Inference, and Learning Algorithms.part3.rar

1.76 MB, 下载次数: 35 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2006-7-30 16:26:04 | 显示全部楼层
Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

Information Theory,
Inference,
and Learning Algorithms
David J.C. MacKay
mackay@mrao.cam.ac.uk

Information Theory, Inference, and Learning Algorithms.part4.rar

1.76 MB, 下载次数: 36 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2006-7-30 16:27:17 | 显示全部楼层
Information Theory, Inference, and Learning Algorithms

David J.C. MacKay

Information Theory,
Inference,
and Learning Algorithms
David J.C. MacKay
mackay@mrao.cam.ac.uk

Information Theory, Inference, and Learning Algorithms.part5.rar

839.53 KB, 下载次数: 32 , 下载积分: 资产 -2 信元, 下载支出 2 信元

发表于 2007-1-26 08:21:04 | 显示全部楼层
感謝分享
发表于 2007-2-10 14:04:56 | 显示全部楼层
thanks
发表于 2007-2-15 10:32:48 | 显示全部楼层
顶起来  谢谢
发表于 2007-2-20 15:34:51 | 显示全部楼层

Wonderful book!!!

Wonderful book!!!
发表于 2007-2-20 15:36:32 | 显示全部楼层

contents include

Contents
Preface.... .........................v
1 Introduction to Information Theory . . . . . ........3
2 Probability, Entropy, and Inference . . . . . . ........22
3 More about Inference . . . ..................48
...................... 65
I Data Compression
4 The Source Coding Theorem . . . . . . . . . ........67
5 Symbol Codes .... ... .... ... ... .... ... . 91
6 Stream Codes . .........................110
7 Codes for Integers . . . . . ..................132
.................... 137
IINoisy-ChannelCoding
8 Correlated Random Variables . . . . . . . . . ........138
9 Communication over a Noisy Channel . . . . ........146
10TheNoisy-ChannelCodingTheorem..... ........162
11Error-CorrectingCodesandRealChannels. ........177
............. 191
IIIFurtherTopicsinInformationTheory
12HashCodes:CodesforE?cientInformationRetrieval..193
13BinaryCodes .........................206
14VeryGoodLinearCodesExist........ ........229
15FurtherExercisesonInformationTheory.. ........233
16MessagePassing...... ..................241
17CommunicationoverConstrainedNoiselessChannels...248
18CrosswordsandCodebreaking........ ........260
19WhyhaveSex?InformationAcquisitionandEvolution..269
.................. 281
IVProbabilitiesandInference
20AnExampleInferenceTask:Clustering... ........284
21ExactInferencebyCompleteEnumeration. ........293
22MaximumLikelihoodandClustering..... ........300
23UsefulProbabilityDistributions....... ........311
24ExactMarginalization... ..................319
25ExactMarginalizationinTrellises...... ........324
26ExactMarginalizationinGraphs....... ........334
27Laplace’sMethod..... ..................341

28ModelComparisonandOccam’sRazor... ........343
29MonteCarloMethods... ..................357
30E?cientMonteCarloMethods........ ........387
31IsingModels. .........................400
32ExactMonteCarloSampling......... ........413
33VariationalMethods.... ..................422
34IndependentComponentAnalysisandLatentVariableMod-
elling..... .........................437
35RandomInferenceTopics. ..................445
36DecisionTheory...... ..................451
37BayesianInferenceandSamplingTheory.. ........457
........................ 467
V Neural networks
38IntroductiontoNeuralNetworks....... ........468
39TheSingleNeuronasaClassifier....... ........471
40CapacityofaSingleNeuron ..................483
41LearningasInference... ..................492
42HopfieldNetworks..... ..................505
43BoltzmannMachines.... ..................522
44SupervisedLearninginMultilayerNetworks. ........527
45GaussianProcesses.... ..................535
46Deconvolution .........................549
..................... 555
VISparseGraphCodes
47Low-DensityParity-CheckCodes...... ........557
48ConvolutionalCodesandTurboCodes.... ........574
49Repeat–AccumulateCodes ..................582
50DigitalFountainCodes.. ..................589
.......................... 597
VIIAppendices
A Notation . . . .........................598
B Some Physics . .........................601
C Some Mathematics . . . . . ..................605
Bibliography.... .........................613
Index........ .........................620
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条

小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-2-26 05:35 , Processed in 0.024842 second(s), 8 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表