|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
1 Scaling of MEMS 1
1.1 Introduction to Scaling Issues 1
1.2 Examples of Dimensional Scaling Potentials 4
1.2.1 Scaling effects on a cantilever beam 4
1.2.2 Scaling of electrostatic actuators 8
1.2.3 Scaling of thermal actuators 11
1.3 Motivation, Fabrication and Scaling of MEMS 14
1.4 Scaling as a Methodological Approach 16
2 Scaling of Microactuators – an Overview 19
2.1 Electrostatic Actuators 19
2.1.1 Transverse combs modelling 20
2.1.2 Lateral combs modelling 22
2.2 Magnetic Transducers 23
2.2.1 Magnetic actuators 25
2.2.2 Ferromagnetic transducers 31
2.3 Thermal Actuators 36
2.3.1 Thermomechanical actuators 40
3 Scaling of Thermal Sensors 53
3.1 Thermoelectric Sensors 53
3.2 Application: Dew-Point Relative Humidity Sensors 61
3.2.1 Device structures and operating principles 62
3.2.2 Device modelling and simulations 64
3.2.3 Device design 67
3.3 Conclusions 71
4 Inductive Sensors for Magnetic Fields 73
4.1 Inductive Microsensors for Magnetic Particles 77
4.1.1 Integrated inductive sensors 77
4.1.2 Planar differential transformer 79
4.1.3 Signal-conditioning circuits 84
4.1.4 Simulation of the planar differential
4.1.5 Experimental results 87
4.2 Magnetic Immunoassay Systems 97
Scaling of Mechanical Sensors 103
5.1 Introduction 103
5.2 Device Modelling and Fabrication Processes 105
5.2.1 Fabrication processes 105
5.2.2 Devices modelling 107
5.2.3 Accelerometers 109
5.2.4 Resonant mass sensors 110
5.3 Experimental Device Prototypes 112
5.3.1 CMOS devices 112
5.3.2 SOI devices 116
5.3.3 Finite element modelling 120
5.4 Scaling Issues on Microaccelerometers and
5.5 Some Experimental Results 127
5.6 Vibrating Microgyroscopes 130
5.6.1 Coupled vibratory gyroscopes 134
6 Scaling of Energy Sources 149
6.1 Introduction 149
6.2 Energy Supply Strategies for Autonomous
Microsystems 151
6.2.1 Use of microlenses in photothermomechanical
actuation 152
6.2.2 Technologies, materials and design of
photothermomechanical actuators 157
6.3 Photothermomechanical and Photothermoelectric
Strategies for Highly Efficient Power Supply of
Autonomous Microsystems 160
6.3.1 Photothermoelectric power generation 161
6.4 Efficiency of the Combined Energy Supply
7 Technologies and Architectures for Autonomous MEMS
Microrobots 169
7.1 Design Issues in Microrobots 169
7.2 A Microrobot Architecture Based on Photothermal
Strategy 171
7.3 A Microrobot as a Paradigm for the Analysis of
Scaling in Microsystems 173
8 Moving towards the Nanoscale 179
8.1 Semiconductor-Based Nano-Electromechanical
Systems 179
8.2 Nanofabrication Facilities 180
8.3 Overview of Nanosensors 181
8.3.1 Use of AFM for materials and nanodevices
characterization 182
8.3.2 Scanning thermal microscopy (SThM) 182
8.3.3 Scanning Hall probe microscopy 183
8.3.4 Mechanical resonant immunospecific
biological detector 183
8.3.5 Micromechanical sensor for differential
detection of nanoscale motions 184
8.3.6 Nanomagnetic sensors 184
8.3.7 Nano-wire piezoresistors 185
8.3.8 Nanometre-scale mechanical
resonators 185
8.3.9 Electric charge mechanical nanosensor 186
8.4 Concluding Remarks 187
9 Examples of Scaling Effects Analysis – DIEES-MEMSLAB 189
9.1 Introduction 189
9.2 Examples of Scaling Cantilever Beam Devices 191
9.3 DIEES-MEMSLAB-Tutorial 198
9.3.1 Introduction 198 |
|