|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
本帖最后由 cjsb37 于 2013-4-29 09:09 编辑
短小,丰富,实用
Practical FIR Filter Design in MATLAB
Abstract
This tutorial white-paper illustrates practical aspects of FIR
filter design and fixed-point implementation along with the
algorithms available in the Filter Design Toolbox and the
Signal Processing Toolbox for this purpose.
The emphasis is mostly on lowpass filters, but many of the
results apply to other filter types as well.
The tutorial focuses on practical aspects of filter design
and implementation, and on the advantages and disadvantages
of the different design algorithms. The theory behind
the design algorithms is avoided except when needed to motivate
them.
Contents
1 Ideal lowpass filter 2
2 FIR lowpass filters 2
2.1 FIR filter design specifications . . . . . . 2
3 Optimal FIR designs with fixed transition
width and filter order 3
3.1 Linear-phase designs . . . . . . . . . . . 4
3.1.1 Equiripple filters . . . . . . . . . 4
3.1.2 Least-squares filters . . . . . . . 4
3.2 Nonlinear-phase designs . . . . . . . . . 5
3.2.1 Minimum-phase designs . . . . . 5
3.2.2 More general nonlinear-phase designs
. . . . . . . . . . . . . . . 6
3.2.3 A word on practical implementation 7
4 Optimal equiripple designs with fixed transition
width and peak passband/stopband ripple 7
4.1 Minimum-phase designs with fixed transition
width and peak passband/stopband
ripple . . . . . . . . . . . . . . . . . . . 8
5 Optimal equiripple designs with fixed peak ripple
and filter order 8
5.1 Minimum-phase designs with fixed peak
ripple and filter order . . . . . . . . . . . 9
6 Other equiripple designs 9
6.1 Constrained-band equiripple designs . . . 9
6.2 Sloped equiripple filters . . . . . . . . . . 10
7 Advanced design algorithms - interpolated FIR
filters 10
7.1 Further IFIR optimizations . . . . . . . . 12
7.2 Multirate implementation of IFIR design . 13
8 Interpolation filter design 13
8.1 Ideal band-limited interpolation in the
frequency domain . . . . . . . . . . . . . 14
8.2 Ideal band-limited interpolation in the
time domain . . . . . . . . . . . . . . . . 15
8.3 Design of FIR interpolation filters . . . . 16
8.3.1 Nyquist FIR filters . . . . . . . . 17
8.3.2 Halfband filters . . . . . . . . . . 17
8.3.3 Other Nyquist filters . . . . . . . 17
9 Design of perfect-reconstruction two-channel
FIR filter banks 18
10 Implementing an FIR filter using fixed-point
arithmetic 20
10.1 Some notation . . . . . . . . . . . . . . . 21
10.2 Quantizing the coefficients . . . . . . . . 21
10.3 Fixed-point filtering . . . . . . . . . . . . 22
10.3.1 Using an accumulator with extended
precision . . . . . . . . . 25
11 A design example 26
11.1 Using the 4016 for GSM . . . . . . . . . 27
11.1.1 Designing the CFIR filter . . . . . 27
11.1.2 Designing the PFIR filter . . . . . 28
A Revision history 31
|
|