在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
EETOP诚邀模拟IC相关培训讲师 创芯人才网--重磅上线啦!
查看: 1384|回复: 2

关于旁路电容的深度对话

[复制链接]
发表于 2009-1-23 15:48:47 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。 编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。本文是对话的第一部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面请“聆听”并学习。 David: 有一种观念认为,当我们做旁路设计时,我们对低频成分要采用大电容(微法级),而对高频成分要采用小电容(纳法或皮法级)。 Tamara: 我赞成,那有什么错吗? David: 那听起来很好并且是有意义的,但是,问题在于当我在实验室中验证那个规则时并未得到我们想要的结果!我要向您发出挑战,Tamara博士。 Tamara: 好啊!我无所畏惧。 David: 让我们看看,你有一个电压调整器并且它需要电源。电源线具有一些串联阻抗(通常是电感以及电阻),这样对于短路来说,它在瞬间提供的电流就不会出现大变化。它需要有一个局部电容供电,如图1所示。

                               
登录/注册后可看大图

图1:旁路电容的功能。
Tamara: 我到目前均赞成你的观点。那就是旁路的定义。Dave,接着说吧。 David: 例如,有些人可能用0.1 μF电容进行旁路。他们也可能用一个1000pF的电容紧挨着它以处理更高的频率。如果我们已经采用了一个0.1 μF的电容,那么,紧挨着它加一个1000pF电容就没有意义。它会增加1%的容值,谁会在意? Tamara: 然而,除了电容值之外,有更多要研究的内容。这两种数值的电容均不理想。 David: 我们必须考察0.1 μF的实际电路;它存在有效串联电阻(ESR)以及有效串联电感(ESL)。 Tamara: 有时候,你还要把介质损耗一项当成一个并联电阻来考虑,如图2所示。

                               
登录/注册后可看大图

图2:旁路电容的模型。
David: 现在,当我们遇到具有瞬态特性的这一损耗时,我们假设0.1 μF电容的ESL远远大约1000pF的电容。我们需要某一器件在短期内供电,因ESL的存在而让0.1 μF的电容做不到这一点。假设就在于1000pF的电容具有更低的ESL,因此,能够提供更好的电流。 Tamara: ESL与你获得以及封装的电容的类型有关。其数值可能完全独立于电容本身的尺寸和数值,如图3所示。 David: (显示出对年轻同事所具有的知识的惊讶) Tamara: 我曾经看到过一些人把100 nF、10 nF和1 nF的电容分级并联起来使用,它们可能均采用相同的封装,例如0402,因为这些电容通常就是采用这种封装形式。然而,每一种0402封装均具有相同的ESL,因为它们具有相同的电感以及相同的高频响应,因此,这么安装电容于事无补。

                               
登录/注册后可看大图


图3:旁路电容的阻抗。
David: 我们在实验室中所发现的问题在于,各种封装均是类似的。我们所采用的大多数陶瓷电容均为面积是0805或0603的电容。我测试发现,把0603 0.1 μF电容挨着0603 100pF电容安装,效果上不如仅仅采用两个0603 0.1 μF的电容。
 楼主| 发表于 2009-1-23 15:50:24 | 显示全部楼层
通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容去耦电容编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。 来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。本文是对话的第二部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面请“聆听”并学习。 Tamara: 我们上次关于旁路电容的对话很好,但是,我认为这个话题没有结束。我们假设电容的低边有一块完美的接地层可用。然而,在一半的情况下,这并不是有效的假设。 David: 我听您说,博士。那天一位同事向我展示了他的最新的板子。“我用的是四层板,完整的接地层,”他真诚地说,“没有问题呀。”我没有把握他说的是否正确。 Tamara: 是的,接地层大有帮助,如果你使用正确的话。 David: 正如我们所说的,旁路电容应该尽可能近地放在电源的旁边。我们假设读者知道把电容的另一边连接至良好的接地层。 Tamara: 可是,让我们确切一点说。你说的“良好的接地”或“良好的接地层”是什么意思? David: 啊,接地应该是0V。 Tamara: 然而,它真是真正的零伏吗? David: 不,当然不是。总是存在一些阻抗,总是存在一些引起电压降的电流。 Tamara: 因此,在一点的地电压永远不会跟另一点一样。 David: 有时候,当我们研究隔离问题时,我们可以假设局部接地层的电压是相对一致的。另一方面,有些应用处于高频环境中,例如,接近发射器或微波炉。这些设备有大量的信号耦合进它们的接地层之中。 Tamara: 那么,我们如何构建一块“良好的接地层”呢?我们的读者应该仅仅采用接地层吗? David: 有时候答案是肯定的。 Tamara: 然而,在接地层上时常存在足够大的电流,从而引起从一点至另一点之间出现巨大的电压降。 David: 因此,问题在于,你如何在一个系统中把每一个电路接地以最优化性能? Tamara: 那取决于电路的类型。 David: 是的,你可能在一个系统中要采用多种接地方案。 Tamara: 当然,所有的地最终都要接在同一个地方。 David: 是的,然而,我们要把每一块接地层直接连接至一个地方吗? Tamara: 我们可以这么做,而那被称为星型接地(这是一种非常流行的接地方式,如果使用正确,是一种成功的接地方式)。
 楼主| 发表于 2009-1-23 15:51:43 | 显示全部楼层
继续关于排版的讨论 通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。 编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。 来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。本文是对话的第三部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。 下面是,第三部分的对话,请“聆听”并学习。 (Tamara博士拿着一袋发着沙沙响声的书进入她的办公室,当Dave从旁边走过时她把那袋书扔在了桌子上。) Dave: 嗨,Tamara:博士,你往那里扔什么? Tamara: 那是我们的读者邮件。 Dave: 我们收到邮件?你的意思是喜欢“来自新泽西Fort Lee的Richard Fader写道:这就是我听说的关于电容器的一切抱怨吗?”之类的邮件? Tamara: 是的,就是那样的信件。 Dave: 关于电容器以及排版吗? Tamara: 当然!这是一封来自Kyle(所有读者的姓名被改变,以保护他们隐私)。在高幅度射频场中,他惯常于把电容器级联起来以旁路他的电路。 Dave: 正如我们所说的,有时候你需要这么做,但是,许多时间你不需要这么做。 Tamara: 他也问到了耦合电容。看来他们在耦合电容上遇到的问题不如在旁路电容上遇到的问题大。 Dave: 是的,我已经注意到了那个问题,但是,一些人担心采用大的耦合电容,因为它太慢。我认为,他们的思路不正确。 Tamara: 在今后的讨论中我们将着手解决那个问题。这里是Carl的评价。他对我们最近关于接地平面上的电压降问题提出的解决方案感到不确定。他认为,在它(感应作用)周围或者需要磁通,或者它仅仅是一个通常很小的IR降。 Dave: 是的,我们通常在视频系统中谈到的60dB的串扰非常小,意味着有几个毫伏的有害信号。上次在例子中我们证明了,为了便于描述,我们把电路做了相当多的简化。实际电路在每一个通道具有完整的直流恢复(具有电子机械继电器),并且它是通孔元件。从图1所示可见,当通孔元件或过孔破坏了一个接地层时会发生什么情况。

                               
登录/注册后可看大图

图1:视频混合器的电路板排版图。边缘电流线显示出现串扰的可能性;带引脚的元件破坏接地层,并把电流线聚集在一起。
Tamara: 你的意思是你不用表面贴装元件,因此,接地层上充满了带引脚的元件的通孔? Dave: 是的,来自输入的大多数回流通过围绕这个电路的窄带之中。与实体接地层相比,电阻要更大。 Tamara: 因此,边缘电路被更多地拥挤在一起。 Dave: 是的。串扰比你想像的要多。表面安装的元件对解决这个问题有很大帮助,因为它们具有更少的通孔,但是,把接地层分开是明智且容易的事情,并且不论你是否拥有大量的过孔它均能消除这个问题。如图2所示。

                               
登录/注册后可看大图

图2:视频混合电路板利用分开的接地层来把串扰最小化。
Tamara: 免费、容易且有效—听起来就像放之四海皆准的惯例。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条


小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-1-11 14:25 , Processed in 0.023460 second(s), 10 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表