|  | 
 
 
| 
Parameter Estimation for Multi-Sensor SignalProcessing: Reduced Rank Regression, Array Processing, and MIMO Communications
×
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册  
 
 KARL WERNER
 
 Doctoral Thesis in Signal Processing
 Stockholm, Sweden, 2007
 
 
 Contents vi
 1 Introduction 1
 1.1 The topics of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.2 The problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 1.3 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . 9
 1.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 1.6 Some useful matrix results . . . . . . . . . . . . . . . . . . . . . . . . 16
 1.7 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 1.A The tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 I Optimal utilization of signal-free samples for array processing
 in unknown colored noise-fields 23
 2 Introduction to DOA estimation in colored noise 25
 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 2.2 Organization of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 2.3 Data model and problem statement . . . . . . . . . . . . . . . . . . . 28
 2.4 The maximum likelihood approach . . . . . . . . . . . . . . . . . . . 29
 2.5 The Cramér-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . 30
 2.A Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
 3 DOA estimation in colored noise - novel algorithms and their
 performance 41
 3.1 Weighted subspace fitting . . . . . . . . . . . . . . . . . . . . . . . . 41
 3.2 An approximative maximum likelihood approach . . . . . . . . . . . 46
 3.3 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 3.A Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
 3.B Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
 vi
 vii
 4 Fast algorithms for uniform linear arrays 65
 4.1 MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
 4.2 C-MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
 4.3 W-MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
 4.4 Complexity comparison . . . . . . . . . . . . . . . . . . . . . . . . . 70
 4.5 Implementation and numerical results . . . . . . . . . . . . . . . . . 70
 5 Source detection 79
 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
 5.2 The WSF criterion function . . . . . . . . . . . . . . . . . . . . . . . 80
 5.3 The AML criterion function . . . . . . . . . . . . . . . . . . . . . . . 82
 5.4 Generalized likelihood ratio test . . . . . . . . . . . . . . . . . . . . . 84
 5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
 5.A Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
 II Reduced rank linear regression and weighted low rank
 approximations 91
 6 Introduction to reduced rank linear regression 93
 6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
 6.2 Organization of Part II . . . . . . . . . . . . . . . . . . . . . . . . . 94
 6.3 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
 7 An instrumental variable method for the reduced rank linear
 regression 97
 7.1 The proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . 97
 7.2 Estimation of the weighting matrix . . . . . . . . . . . . . . . . . . . 99
 7.3 Weighted low rank approximation . . . . . . . . . . . . . . . . . . . 100
 7.4 Detecting the rank of the regression . . . . . . . . . . . . . . . . . . 104
 7.5 The proposed algorithm step-by-step . . . . . . . . . . . . . . . . . . 106
 7.A Useful gradients and Hessians . . . . . . . . . . . . . . . . . . . . . . 109
 8 Performance of the proposed algorithm 113
 8.1 Asymptotical covariance of the estimate . . . . . . . . . . . . . . . . 113
 8.2 The Cramér-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . 115
 8.3 Relation to previous methods . . . . . . . . . . . . . . . . . . . . . . 119
 8.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
 8.A Equivalence of the proposed estimator to maximum likelihood . . . . 128
 III Estimation of covariance matrices with Kronecker product
 structure 131
 9 Introduction to Kronecker product structured covariance matrices 133
 viii CONTENTS
 9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
 9.2 Organization of Part III . . . . . . . . . . . . . . . . . . . . . . . . . 135
 9.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
 10 Estimation based on exact channel knowledge 139
 10.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 139
 10.2 The Cramér-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . 142
 10.3 A non-iterative flipflop approach . . . . . . . . . . . . . . . . . . . . 144
 10.4 A covariance matching approach . . . . . . . . . . . . . . . . . . . . 145
 10.5 Asymptotic performance of the covariance matching estimator . . . . 148
 10.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
 10.7 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
 10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
 10.A Proof of Theorem 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 160
 10.B Proof of Theorem 10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 163
 11 Estimation based on pilots 165
 11.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
 11.2 Heuristic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
 11.3 The Cramér-Rao lower bound . . . . . . . . . . . . . . . . . . . . . . 167
 11.4 A covariance matching approach . . . . . . . . . . . . . . . . . . . . 168
 11.5 Weighted low rank approximation . . . . . . . . . . . . . . . . . . . 171
 11.6 Performance of the covariance matching approach . . . . . . . . . . . 172
 11.7 An alternative approach . . . . . . . . . . . . . . . . . . . . . . . . . 174
 11.8 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . 176
 11.9 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
 11.10Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
 11.11Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
 11.A Proof of Theorem 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 187
 11.B Proof of Lemma 11.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
 Bibliography
 | 
 |