在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 1987|回复: 3

高手帮我看看这段代码的意思

[复制链接]
发表于 2008-10-10 20:03:33 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
`include "timescale.v"

module eth_miim
(
  Clk,
  Reset,
  Divider,
  NoPre,
  CtrlData,
  Rgad,
  Fiad,
  WCtrlData,
  RStat,
  ScanStat,
  Mdi,
  Mdo,
  MdoEn,
  Mdc,
  Busy,
  Prsd,
  LinkFail,
  Nvalid,
  WCtrlDataStart,
  RStatStart,
  UpdateMIIRX_DATAReg
);

input         Clk;                // Host Clock
input         Reset;              // General Reset
input   [7:0] Divider;            // Divider for the host clock
input  [15:0] CtrlData;           // Control Data (to be written to the PHY reg.)
input   [4:0] Rgad;               // Register Address (within the PHY)
input   [4:0] Fiad;               // PHY Address
input         NoPre;              // No Preamble (no 32-bit preamble)
input         WCtrlData;          // Write Control Data operation
input         RStat;              // Read Status operation
input         ScanStat;           // Scan Status operation
input         Mdi;                // MII Management Data In
output        Mdc;                // MII Management Data Clock
output        Mdo;                // MII Management Data Output
output        MdoEn;              // MII Management Data Output Enable
output        Busy;               // Busy Signal
output        LinkFail;           // Link Integrity Signal
output        Nvalid;             // Invalid Status (qualifier for the valid scan result)
output [15:0] Prsd;               // Read Status Data (data read from the PHY)
output        WCtrlDataStart;     // This signals resets the WCTRLDATA bit in the MIIM Command register
output        RStatStart;         // This signal resets the RSTAT BIT in the MIIM Command register
output        UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data
parameter Tp = 1;

reg           Nvalid;
reg           EndBusy_d;          // Pre-end Busy signal
reg           EndBusy;            // End Busy signal (stops the operation in progress)
reg           WCtrlData_q1;       // Write Control Data operation delayed 1 Clk cycle
reg           WCtrlData_q2;       // Write Control Data operation delayed 2 Clk cycles
reg           WCtrlData_q3;       // Write Control Data operation delayed 3 Clk cycles
reg           WCtrlDataStart;     // Start Write Control Data Command (positive edge detected)
reg           WCtrlDataStart_q;
reg           WCtrlDataStart_q1;  // Start Write Control Data Command delayed 1 Mdc cycle
reg           WCtrlDataStart_q2;  // Start Write Control Data Command delayed 2 Mdc cycles
reg           RStat_q1;           // Read Status operation delayed 1 Clk cycle
reg           RStat_q2;           // Read Status operation delayed 2 Clk cycles
reg           RStat_q3;           // Read Status operation delayed 3 Clk cycles
reg           RStatStart;         // Start Read Status Command (positive edge detected)
reg           RStatStart_q1;      // Start Read Status Command delayed 1 Mdc cycle
reg           RStatStart_q2;      // Start Read Status Command delayed 2 Mdc cycles
reg           ScanStat_q1;        // Scan Status operation delayed 1 cycle
reg           ScanStat_q2;        // Scan Status operation delayed 2 cycles
reg           SyncStatMdcEn;      // Scan Status operation delayed at least cycles and synchronized to MdcEn
wire          WriteDataOp;        // Write Data Operation (positive edge detected)
wire          ReadStatusOp;       // Read Status Operation (positive edge detected)
wire          ScanStatusOp;       // Scan Status Operation (positive edge detected)
wire          StartOp;            // Start Operation (start of any of the preceding operations)
wire          EndOp;              // End of Operation
reg           InProgress;         // Operation in progress
reg           InProgress_q1;      // Operation in progress delayed 1 Mdc cycle
reg           InProgress_q2;      // Operation in progress delayed 2 Mdc cycles
reg           InProgress_q3;      // Operation in progress delayed 3 Mdc cycles
reg           WriteOp;            // Write Operation Latch (When asserted, write operation is in progress)
reg     [6:0] BitCounter;         // Bit Counter

wire          MdcFrame;           // Frame window for limiting the Mdc
wire    [3:0] ByteSelect;         // Byte Select defines which byte (preamble, data, operation, etc.) is loaded and shifted through the shift register.
wire          MdcEn;              // MII Management Data Clock Enable signal is asserted for one Clk period before Mdc rises.
wire          ShiftedBit;         // This bit is output of the shift register and is connected to the Mdo signal

wire          LatchByte1_d2;
wire          LatchByte0_d2;
reg           LatchByte1_d;
reg           LatchByte0_d;
reg     [1:0] LatchByte;          // Latch Byte selects which part of Read Status Data is updated from the shift register
reg           UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data


// Generation of the EndBusy signal. It is used for ending the MII Management operation.
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    begin
      EndBusy_d <= #Tp 1'b0;
      EndBusy <= #Tp 1'b0;
    end
  else
    begin
      EndBusy_d <= #Tp ~InProgress_q2 & InProgress_q3;
      EndBusy   <= #Tp EndBusy_d;
    end
end

// Update MII RX_DATA register
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    UpdateMIIRX_DATAReg <= #Tp 0;
  else
  if(EndBusy & ~WCtrlDataStart_q)
    UpdateMIIRX_DATAReg <= #Tp 1;
  else
    UpdateMIIRX_DATAReg <= #Tp 0;   
end

// Generation of the delayed signals used for positive edge triggering.
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    begin
      WCtrlData_q1 <= #Tp 1'b0;
      WCtrlData_q2 <= #Tp 1'b0;
      WCtrlData_q3 <= #Tp 1'b0;
      
      RStat_q1 <= #Tp 1'b0;
      RStat_q2 <= #Tp 1'b0;
      RStat_q3 <= #Tp 1'b0;
      ScanStat_q1  <= #Tp 1'b0;
      ScanStat_q2  <= #Tp 1'b0;
      SyncStatMdcEn <= #Tp 1'b0;
    end
  else
    begin
      WCtrlData_q1 <= #Tp WCtrlData;
      WCtrlData_q2 <= #Tp WCtrlData_q1;
      WCtrlData_q3 <= #Tp WCtrlData_q2;
      RStat_q1 <= #Tp RStat;
      RStat_q2 <= #Tp RStat_q1;
      RStat_q3 <= #Tp RStat_q2;
      ScanStat_q1  <= #Tp ScanStat;
      ScanStat_q2  <= #Tp ScanStat_q1;
      if(MdcEn)
        SyncStatMdcEn  <= #Tp ScanStat_q2;
    end
end

// Generation of the Start Commands (Write Control Data or Read Status)
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    begin
      WCtrlDataStart <= #Tp 1'b0;
      WCtrlDataStart_q <= #Tp 1'b0;
      RStatStart <= #Tp 1'b0;
    end
  else
    begin
      if(EndBusy)
        begin
          WCtrlDataStart <= #Tp 1'b0;
          RStatStart <= #Tp 1'b0;
        end
      else
        begin
          if(WCtrlData_q2 & ~WCtrlData_q3)
            WCtrlDataStart <= #Tp 1'b1;
          if(RStat_q2 & ~RStat_q3)
            RStatStart <= #Tp 1'b1;
          WCtrlDataStart_q <= #Tp WCtrlDataStart;
        end
    end
end

// Generation of the Nvalid signal (indicates when the status is invalid)
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    Nvalid <= #Tp 1'b0;
  else
    begin
      if(~InProgress_q2 & InProgress_q3)
        begin
          Nvalid <= #Tp 1'b0;
        end
      else
        begin
          if(ScanStat_q2  & ~SyncStatMdcEn)
            Nvalid <= #Tp 1'b1;
        end
    end
end
// Signals used for the generation of the Operation signals (positive edge)
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    begin
      WCtrlDataStart_q1 <= #Tp 1'b0;
      WCtrlDataStart_q2 <= #Tp 1'b0;
      RStatStart_q1 <= #Tp 1'b0;
      RStatStart_q2 <= #Tp 1'b0;
      InProgress_q1 <= #Tp 1'b0;
      InProgress_q2 <= #Tp 1'b0;
      InProgress_q3 <= #Tp 1'b0;
     LatchByte0_d <= #Tp 1'b0;
     LatchByte1_d <= #Tp 1'b0;
     LatchByte <= #Tp 2'b00;
    end
  else
    begin
      if(MdcEn)
        begin
          WCtrlDataStart_q1 <= #Tp WCtrlDataStart;
          WCtrlDataStart_q2 <= #Tp WCtrlDataStart_q1;
          RStatStart_q1 <= #Tp RStatStart;
          RStatStart_q2 <= #Tp RStatStart_q1;
          LatchByte[0] <= #Tp LatchByte0_d;
          LatchByte[1] <= #Tp LatchByte1_d;
          LatchByte0_d <= #Tp LatchByte0_d2;
          LatchByte1_d <= #Tp LatchByte1_d2;
          InProgress_q1 <= #Tp InProgress;
          InProgress_q2 <= #Tp InProgress_q1;
          InProgress_q3 <= #Tp InProgress_q2;
        end
    end
end

// Generation of the Operation signals
assign WriteDataOp  = WCtrlDataStart_q1 & ~WCtrlDataStart_q2;   
assign ReadStatusOp = RStatStart_q1     & ~RStatStart_q2;
assign ScanStatusOp = SyncStatMdcEn     & ~InProgress & ~InProgress_q1 & ~InProgress_q2;
assign StartOp      = WriteDataOp | ReadStatusOp | ScanStatusOp;
// Busy
assign Busy = WCtrlDataStart | RStatStart | SyncStatMdcEn | EndBusy | InProgress | InProgress_q3 | Nvalid;

// Generation of the InProgress signal (indicates when an operation is in progress)
// Generation of the WriteOp signal (indicates when a write is in progress)
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    begin
      InProgress <= #Tp 1'b0;
      WriteOp <= #Tp 1'b0;
    end
  else
    begin
      if(MdcEn)
        begin
          if(StartOp)
            begin
              if(~InProgress)
                WriteOp <= #Tp WriteDataOp;
              InProgress <= #Tp 1'b1;
            end
          else
            begin
              if(EndOp)
                begin
                  InProgress <= #Tp 1'b0;
                  WriteOp <= #Tp 1'b0;
                end
            end
        end
    end
end

// Bit Counter counts from 0 to 63 (from 32 to 63 when NoPre is asserted)
always @ (posedge Clk or posedge Reset)
begin
  if(Reset)
    BitCounter[6:0] <= #Tp 7'h0;
  else
    begin
      if(MdcEn)
        begin
          if(InProgress)
            begin
              if(NoPre & ( BitCounter == 7'h0 ))
                BitCounter[6:0] <= #Tp 7'h21;
              else
                BitCounter[6:0] <= #Tp BitCounter[6:0] + 1'b1;
            end
          else
            BitCounter[6:0] <= #Tp 7'h0;
        end
    end
end

// Operation ends when the Bit Counter reaches 63
assign EndOp = BitCounter==63;
assign ByteSelect[0] = InProgress & ((NoPre & (BitCounter == 7'h0)) | (~NoPre & (BitCounter == 7'h20)));
assign ByteSelect[1] = InProgress & (BitCounter == 7'h28);
assign ByteSelect[2] = InProgress & WriteOp & (BitCounter == 7'h30);
assign ByteSelect[3] = InProgress & WriteOp & (BitCounter == 7'h38);

// Latch Byte selects which part of Read Status Data is updated from the shift register
assign LatchByte1_d2 = InProgress & ~WriteOp & BitCounter == 7'h37;
assign LatchByte0_d2 = InProgress & ~WriteOp & BitCounter == 7'h3F;

// Connecting the Clock Generator Module
eth_clockgen clkgen(.Clk(Clk), .Reset(Reset), .Divider(Divider[7:0]), .MdcEn(MdcEn), .MdcEn_n(MdcEn_n), .Mdc(Mdc)
                   );
// Connecting the Shift Register Module
eth_shiftreg shftrg(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .Mdi(Mdi), .Fiad(Fiad), .Rgad(Rgad),
                    .CtrlData(CtrlData), .WriteOp(WriteOp), .ByteSelect(ByteSelect), .LatchByte(LatchByte),
                    .ShiftedBit(ShiftedBit), .Prsd(Prsd), .LinkFail(LinkFail)
                   );
// Connecting the Output Control Module
eth_outputcontrol outctrl(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .InProgress(InProgress),
                          .ShiftedBit(ShiftedBit), .BitCounter(BitCounter), .WriteOp(WriteOp), .NoPre(NoPre),
                          .Mdo(Mdo), .MdoEn(MdoEn)
                         );
endmodule
发表于 2008-10-12 21:21:16 | 显示全部楼层
`include "timescale.v"

module eth_miim

(

  Clk,

  Reset,

  Divider,

  NoPre,

  CtrlData,

  Rgad,

  Fiad,

  WCtrlData,

  RStat,

  ScanStat,

  Mdi,

  Mdo,

  MdoEn,

  Mdc,

  Busy,

  Prsd,

  LinkFail,

  Nvalid,

  WCtrlDataStart,

  RStatStart,

  UpdateMIIRX_DATAReg

);

input         Clk;                // Host Clock

input         Reset;              // General Reset

input   [7:0] Divider;            // Divider for the host clock

input  [15:0] CtrlData;           // Control Data (to be written to the PHY reg.)

input   [4:0] Rgad;               // Register Address (within the PHY)

input   [4:0] Fiad;               // PHY Address

input         NoPre;              // No Preamble (no 32-bit preamble)

input         WCtrlData;          // Write Control Data operation

input         RStat;              // Read Status operation

input         ScanStat;           // Scan Status operation

input         Mdi;                // MII Management Data In

output        Mdc;                // MII Management Data Clock

output        Mdo;                // MII Management Data Output

output        MdoEn;              // MII Management Data Output Enable

output        Busy;               // Busy Signal

output        LinkFail;           // Link Integrity Signal

output        Nvalid;             // Invalid Status (qualifier for the valid scan result)

output [15:0] Prsd;               // Read Status Data (data read from the PHY)

output        WCtrlDataStart;     // This signals resets the WCTRLDATA bit in the MIIM Command register

output        RStatStart;         // This signal resets the RSTAT BIT in the MIIM Command register

output        UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data

parameter Tp = 1;

reg           Nvalid;

reg           EndBusy_d;          // Pre-end Busy signal

reg           EndBusy;            // End Busy signal (stops the operation in progress)

reg           WCtrlData_q1;       // Write Control Data operation delayed 1 Clk cycle

reg           WCtrlData_q2;       // Write Control Data operation delayed 2 Clk cycles

reg           WCtrlData_q3;       // Write Control Data operation delayed 3 Clk cycles

reg           WCtrlDataStart;     // Start Write Control Data Command (positive edge detected)

reg           WCtrlDataStart_q;

reg           WCtrlDataStart_q1;  // Start Write Control Data Command delayed 1 Mdc cycle

reg           WCtrlDataStart_q2;  // Start Write Control Data Command delayed 2 Mdc cycles

reg           RStat_q1;           // Read Status operation delayed 1 Clk cycle

reg           RStat_q2;           // Read Status operation delayed 2 Clk cycles

reg           RStat_q3;           // Read Status operation delayed 3 Clk cycles

reg           RStatStart;         // Start Read Status Command (positive edge detected)

reg           RStatStart_q1;      // Start Read Status Command delayed 1 Mdc cycle

reg           RStatStart_q2;      // Start Read Status Command delayed 2 Mdc cycles

reg           ScanStat_q1;        // Scan Status operation delayed 1 cycle

reg           ScanStat_q2;        // Scan Status operation delayed 2 cycles

reg           SyncStatMdcEn;      // Scan Status operation delayed at least cycles and synchronized to MdcEn

wire          WriteDataOp;        // Write Data Operation (positive edge detected)

wire          ReadStatusOp;       // Read Status Operation (positive edge detected)

wire          ScanStatusOp;       // Scan Status Operation (positive edge detected)

wire          StartOp;            // Start Operation (start of any of the preceding operations)

wire          EndOp;              // End of Operation

reg           InProgress;         // Operation in progress

reg           InProgress_q1;      // Operation in progress delayed 1 Mdc cycle

reg           InProgress_q2;      // Operation in progress delayed 2 Mdc cycles

reg           InProgress_q3;      // Operation in progress delayed 3 Mdc cycles

reg           WriteOp;            // Write Operation Latch (When asserted, write operation is in progress)

reg     [6:0] BitCounter;         // Bit Counter

wire          MdcFrame;           // Frame window for limiting the Mdc

wire    [3:0] ByteSelect;         // Byte Select defines which byte (preamble, data, operation, etc.) is loaded and shifted through the shift register.

wire          MdcEn;              // MII Management Data Clock Enable signal is asserted for one Clk period before Mdc rises.

wire          ShiftedBit;         // This bit is output of the shift register and is connected to the Mdo signal

wire          LatchByte1_d2;

wire          LatchByte0_d2;

reg           LatchByte1_d;

reg           LatchByte0_d;

reg     [1:0] LatchByte;          // Latch Byte selects which part of Read Status Data is updated from the shift register

reg           UpdateMIIRX_DATAReg;// Updates MII RX_DATA register with read data

// Generation of the EndBusy signal. It is used for ending the MII Management operation.

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    begin

      EndBusy_d <= #Tp 1'b0;

      EndBusy <= #Tp 1'b0;

    end

  else

    begin

      EndBusy_d <= #Tp ~InProgress_q2 & InProgress_q3;

      EndBusy   <= #Tp EndBusy_d;

    end

end

// Update MII RX_DATA register

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    UpdateMIIRX_DATAReg <= #Tp 0;

  else

  if(EndBusy & ~WCtrlDataStart_q)

    UpdateMIIRX_DATAReg <= #Tp 1;

  else

    UpdateMIIRX_DATAReg <= #Tp 0;   

end

// Generation of the delayed signals used for positive edge triggering.

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    begin

      WCtrlData_q1 <= #Tp 1'b0;

      WCtrlData_q2 <= #Tp 1'b0;

      WCtrlData_q3 <= #Tp 1'b0;

      

      RStat_q1 <= #Tp 1'b0;

      RStat_q2 <= #Tp 1'b0;

      RStat_q3 <= #Tp 1'b0;

      ScanStat_q1  <= #Tp 1'b0;

      ScanStat_q2  <= #Tp 1'b0;

      SyncStatMdcEn <= #Tp 1'b0;

    end

  else

    begin

      WCtrlData_q1 <= #Tp WCtrlData;

      WCtrlData_q2 <= #Tp WCtrlData_q1;

      WCtrlData_q3 <= #Tp WCtrlData_q2;

      RStat_q1 <= #Tp RStat;

      RStat_q2 <= #Tp RStat_q1;

      RStat_q3 <= #Tp RStat_q2;

      ScanStat_q1  <= #Tp ScanStat;

      ScanStat_q2  <= #Tp ScanStat_q1;

      if(MdcEn)

        SyncStatMdcEn  <= #Tp ScanStat_q2;

    end

end

// Generation of the Start Commands (Write Control Data or Read Status)

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    begin

      WCtrlDataStart <= #Tp 1'b0;

      WCtrlDataStart_q <= #Tp 1'b0;

      RStatStart <= #Tp 1'b0;

    end

  else

    begin

      if(EndBusy)

        begin

          WCtrlDataStart <= #Tp 1'b0;

          RStatStart <= #Tp 1'b0;

        end

      else

        begin

          if(WCtrlData_q2 & ~WCtrlData_q3)

            WCtrlDataStart <= #Tp 1'b1;

          if(RStat_q2 & ~RStat_q3)

            RStatStart <= #Tp 1'b1;

          WCtrlDataStart_q <= #Tp WCtrlDataStart;

        end

    end

end

// Generation of the Nvalid signal (indicates when the status is invalid)

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    Nvalid <= #Tp 1'b0;

  else

    begin

      if(~InProgress_q2 & InProgress_q3)

        begin

          Nvalid <= #Tp 1'b0;

        end

      else

        begin

          if(ScanStat_q2  & ~SyncStatMdcEn)

            Nvalid <= #Tp 1'b1;

        end

    end

end

// Signals used for the generation of the Operation signals (positive edge)

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    begin

      WCtrlDataStart_q1 <= #Tp 1'b0;

      WCtrlDataStart_q2 <= #Tp 1'b0;

      RStatStart_q1 <= #Tp 1'b0;

      RStatStart_q2 <= #Tp 1'b0;

      InProgress_q1 <= #Tp 1'b0;

      InProgress_q2 <= #Tp 1'b0;

      InProgress_q3 <= #Tp 1'b0;

     LatchByte0_d <= #Tp 1'b0;

     LatchByte1_d <= #Tp 1'b0;

     LatchByte <= #Tp 2'b00;

    end

  else

    begin

      if(MdcEn)

        begin

          WCtrlDataStart_q1 <= #Tp WCtrlDataStart;

          WCtrlDataStart_q2 <= #Tp WCtrlDataStart_q1;

          RStatStart_q1 <= #Tp RStatStart;

          RStatStart_q2 <= #Tp RStatStart_q1;

          LatchByte[0] <= #Tp LatchByte0_d;

          LatchByte[1] <= #Tp LatchByte1_d;

          LatchByte0_d <= #Tp LatchByte0_d2;

          LatchByte1_d <= #Tp LatchByte1_d2;

          InProgress_q1 <= #Tp InProgress;

          InProgress_q2 <= #Tp InProgress_q1;

          InProgress_q3 <= #Tp InProgress_q2;

        end

    end

end

// Generation of the Operation signals

assign WriteDataOp  = WCtrlDataStart_q1 & ~WCtrlDataStart_q2;   

assign ReadStatusOp = RStatStart_q1     & ~RStatStart_q2;

assign ScanStatusOp = SyncStatMdcEn     & ~InProgress & ~InProgress_q1 & ~InProgress_q2;

assign StartOp      = WriteDataOp | ReadStatusOp | ScanStatusOp;

// Busy

assign Busy = WCtrlDataStart | RStatStart | SyncStatMdcEn | EndBusy | InProgress | InProgress_q3 | Nvalid;

// Generation of the InProgress signal (indicates when an operation is in progress)

// Generation of the WriteOp signal (indicates when a write is in progress)

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    begin

      InProgress <= #Tp 1'b0;

      WriteOp <= #Tp 1'b0;

    end

  else

    begin

      if(MdcEn)

        begin

          if(StartOp)

            begin

              if(~InProgress)

                WriteOp <= #Tp WriteDataOp;

              InProgress <= #Tp 1'b1;

            end

          else

            begin

              if(EndOp)

                begin

                  InProgress <= #Tp 1'b0;

                  WriteOp <= #Tp 1'b0;

                end

            end

        end

    end

end

// Bit Counter counts from 0 to 63 (from 32 to 63 when NoPre is asserted)

always @ (posedge Clk or posedge Reset)

begin

  if(Reset)

    BitCounter[6:0] <= #Tp 7'h0;

  else

    begin

      if(MdcEn)

        begin

          if(InProgress)

            begin

              if(NoPre & ( BitCounter == 7'h0 ))

                BitCounter[6:0] <= #Tp 7'h21;

              else

                BitCounter[6:0] <= #Tp BitCounter[6:0] + 1'b1;

            end

          else

            BitCounter[6:0] <= #Tp 7'h0;

        end

    end

end

// Operation ends when the Bit Counter reaches 63

assign EndOp = BitCounter==63;

assign ByteSelect[0] = InProgress & ((NoPre & (BitCounter == 7'h0)) | (~NoPre & (BitCounter == 7'h20)));

assign ByteSelect[1] = InProgress & (BitCounter == 7'h28);

assign ByteSelect[2] = InProgress & WriteOp & (BitCounter == 7'h30);

assign ByteSelect[3] = InProgress & WriteOp & (BitCounter == 7'h38);

// Latch Byte selects which part of Read Status Data is updated from the shift register

assign LatchByte1_d2 = InProgress & ~WriteOp & BitCounter == 7'h37;

assign LatchByte0_d2 = InProgress & ~WriteOp & BitCounter == 7'h3F;

// Connecting the Clock Generator Module

eth_clockgen clkgen(.Clk(Clk), .Reset(Reset), .Divider(Divider[7:0]), .MdcEn(MdcEn), .MdcEn_n(MdcEn_n), .Mdc(Mdc)

                   );

// Connecting the Shift Register Module

eth_shiftreg shftrg(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .Mdi(Mdi), .Fiad(Fiad), .Rgad(Rgad),

                    .CtrlData(CtrlData), .WriteOp(WriteOp), .ByteSelect(ByteSelect), .LatchByte(LatchByte),

                    .ShiftedBit(ShiftedBit), .Prsd(Prsd), .LinkFail(LinkFail)

                   );

// Connecting the Output Control Module

eth_outputcontrol outctrl(.Clk(Clk), .Reset(Reset), .MdcEn_n(MdcEn_n), .InProgress(InProgress),

                          .ShiftedBit(ShiftedBit), .BitCounter(BitCounter), .WriteOp(WriteOp), .NoPre(NoPre),

                          .Mdo(Mdo), .MdoEn(MdoEn)

                         );

endmodule
发表于 2009-1-8 15:22:49 | 显示全部楼层

以太网的

你的这个我也在看,如果可以的话我们能够交个朋友吗,我的qq240844155希望可以和你交流一下看法
发表于 2012-9-8 15:16:29 | 显示全部楼层
楼上两位,我现在再看这段程序,非常希望能和你们交流一下。QQ:675819058
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条

小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-11-17 07:32 , Processed in 0.027777 second(s), 11 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表