|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
×
Layout for Mixed Analog Digital ICs
[size=117%]t[size=117%]
Introduction
[size=117%]t[size=117%]
Floor plan strategy
[size=117%]t[size=117%]
Cell layout rules
[size=117%]t[size=117%]
Layout for reliability
[size=117%]t[size=117%]
Layout for min X-talk
[size=117%]t[size=117%]
Layout for matching
[size=117%]t[size=117%]
Conclusions
[size=117%]•[size=117%]Most of mixed analog/digital chip fails due to the lack of [size=117%]good layout expertise
[size=83%]–[size=83%]matching = f (dimensions, layout)
[size=83%]–[size=83%]cross talk in A/D and D/A
[size=83%]–[size=83%]maximal operation speed limited by wire delay
[size=83%]–[size=83%]reliability (ESD, Latch up)
[size=83%]–[size=83%]EMC/EMI radiation
[size=117%]•[size=117%]A good layout strategy and design is a key to minimal chip [size=117%]area,
minimal layout time and the best performance
[size=133%]•[size=133%]I/O pin placement
–AVDD/AVSS,
DVDD/DVSS
–AGND/REF
–Analog In/Out
–Digital In/Out (Minimal crosstalk to Ain/Aout)
–Test pins
–Xtal In/Out (Close to VDD/VSS)
–Bonding rules
[size=133%]•[size=133%]VDD/VSS Routing
–Min IR drop (metal wide and length,
vias)
–Min ground bounce and on-chip decoupling
–Separate AVDD/AVSS and DVDD/DVSS
–Structured VDD/VSS routing i.s.o noodle type
–Electromigration rules (metal W and contacts)
–ESD/Latchup needs separate wide VDD/VSS lines
–EMC/EMI issue through VDD/VSS (loop area)
[size=133%]•[size=133%]Differential mode radiation
–dt/dt => B(t) loop antenna:
[size=83%]•[size=83%]B(t) [size=83%]µ[size=83%]
I(f) * f[size=54%]2 [size=83%]* A / r
[size=133%]•[size=133%]Common mode radiation
–dv/dt => E(t): wire antenna:
[size=83%]•[size=83%]E(t) [size=83%]µ[size=83%]
I(f) * l * f / r
[size=133%]•[size=133%]Clock Routing
–Clock generator (e.g; XTAL) close to AVDD/AVSS
–Clock for ASP
[size=83%]•[size=83%]VDD/VSS must be Analog supply
[size=83%]•[size=83%]stable level (without ringing)
[size=83%]•[size=83%]low jitter (phase noise)
–Clock for DSP
[size=83%]•[size=83%]driving capability
[size=83%]•[size=83%]min clock skew versus
EMC radiation
[size=83%]•[size=83%]de-phasing with the analog clock for min X-talk
[size=133%]•[size=133%]Cell placement and signal routing
–Data path structure
–Analog cells v.s. digital cells placement
–AGND/VREF must be wide and far from digital
–No digital above and near high Z nodes
–Sensitive node wire must be short
–Critical path (min parasitic RC delay)
–Test pads for critical and important nodes
[size=133%]•[size=133%]Basic rules for cell layout
–Cell area estimation (W/L, R, C, Routing)
–Power supply, In/Out location
–Matching requirement (MOST, R, C)
–Substrate/well contacts (Latch up)
–Do not use Pythagoras rule for spacing
–Layout name = Schematic name (data base structure)
[size=83%]•[size=83%]Use unified cell name for all views (hierarchical and reuse)
[size=83%]–[size=83%]Schematic, layout, symbol, functional, description
[size=133%]•[size=133%]ESD layout rules
–I/O structures for ESD (HBM, CDM model)
–Power supplies protection
–Multiple power supplies protection
–Separate VDD/VSS Ring connecting to bond pads
–Do not use min L devices in the input&output
–A small resistor at output (nMOS)
–Use only approved I/O cells by expert
–
[size=133%]•[size=133%]Latchup layout rule
–Double guard rings in all I/O structures
[size=83%]•[size=83%]to absorb substrate current
–Substrate/Well contacts rules
[size=83%]•[size=83%]to reduce substrate/well resistance
–Distance p+ to nWell
–Low resistive substrate (Epi-wafer)
–
[size=133%]•[size=133%]X-talk noise sources
–Digital switching noise:
[size=83%]•[size=83%]dv/dt =>capacitive/conductive coupling
[size=83%]•[size=83%]di/dt => inductive/conductive coupling
–Analog power output:
[size=83%]•[size=83%]larger di/dt => inductive/conductive coupling
–Parasitic poly gate and substrate resistor noise
[size=83%]•[size=83%]ultra low noise amplifiers
–
[size=133%]•[size=133%]Substrate X-talk (conductive coupling)
–L*di/dt at DVSS => ground bounce
–Kelvin VSS for substrate contact(Latch up???)
–On-chip decoupling techniques
–Multi DVDD/DVSS bonding
–Local substrate shielding
–Fully differential and matched layout
–Slew controlled logic design
[size=133%]•[size=133%]Error in CMOS process
–Absolute error:
DR/R, DC/C,
DVt/Vt,
Db/b > +-20%
–Matching error:
< 0.1% is possible by good circuit design and layout design
[size=133%]•[size=133%]Matching => Analog accuracy
–Amplifier Gain (R1/R2)
–SC filter time constant (C1/C2)
–Ratio based A/D and D/A accuracy
–Tuning of CT filters (Mosfet-C, Gm-C, Gm-OTA-C)
[size=133%]•[size=133%]Layout design for matching
–Capacitor matching rules
[size=83%]•[size=83%]design to limit the capacitor ratio value
[size=83%]•[size=83%]choice of the unit capacitor area with identical layout structure
[size=83%]•[size=83%]interdigitate layout,
common centroid structure
[size=83%]•[size=83%]dummy capacitors for uniform environment
–Resistor matching rules
[size=83%]•[size=83%]never use small width W resistor
[size=83%]•[size=83%]choice of the unit resistor value with L ~ 50---100 um
[size=83%]•[size=83%]identical layout structure &contacts and the same direction
[size=83%]•[size=83%]dummy resistors for uniform environment
[size=133%]•[size=133%]Layout design for matching (Contd)
–MOSFET matching rules
[size=83%]•[size=83%]never use min dimensions (W,L)
[size=83%]•[size=83%]use the same L for matched MOSFETs
M1&M2
[size=83%]•[size=83%]define a UNIT MOS such that M2=n*M1
[size=83%]•[size=83%]the same layout structure for each unit MOS
[size=83%]•[size=83%]M1&M2 as close as possible and in the same direction
[size=83%]•[size=83%]cross coupled/common centroid MOS pair
[size=117%]•[size=117%]For a given design in a given technology,
the layout [size=117%]determines the final chip performance
[size=83%]–[size=83%]floor plan, noise, matching, cross talk, reliability, EMC etc
[size=117%]•[size=117%]Good layout strategy leads to minimal chip area,
minimal [size=117%]layout time and the best performance
[size=117%]•[size=117%]Expertise in layout design is a basis for a good IC designer
|
|