在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
EETOP诚邀模拟IC相关培训讲师 创芯人才网--重磅上线啦!
查看: 2903|回复: 6

求助!

[复制链接]
发表于 2005-3-17 09:56:09 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
谁能拉兄弟一把,看看这段话怎么翻译好,或者相关资料,不甚感激!
下面的只是一部分,详细的请看附件~!谢谢了!
Ask The Application Engineer—32
Practical Techniques to Avoid Instability Due to Capacitive Loading
By Soufiane Bendaoud, (soufiane.bendaoud@analog.com)
Giampaolo Marino (giampaolo.marino@analog.com)
Q: ADI has published a lot of information on dealing with capacitive loading and other stability issues in books, such as the amplifier seminar series, in earlier issues of Analog Dialogue, and in some design tools. But, I need a refresher—NOW.
A: OK. Here goes!
Capacitive loads often give rise to problems, in part because they can reduce the output bandwidth and slew rate, but mainly because the phase lag they produce in the op amp’s feedback loop can cause instability. Although some capacitive loading is inevitable, amplifiers are often subjected to sufficient capacitive loading to cause overshoots, ringing, and even oscillation. The problem is especially severe when large capacitive loads, such as LCD panels or poorly terminated coaxial cables, must be driven—but unpleasant surprises in precision low-frequency and dc applications can result as well.
As will be seen, the op amp is most prone to instability when it is configured as a unity-gain follower, either because (a) there is no attenuation in the loop, or (b) large common-mode swings, though not substantially affecting accuracy of the signal gain, can modulate the loop gain into unstable regions.
The ability of an op amp to drive capacitive loads is affected by several factors:
1.the amplifier’s internal architecture (for example, output impedance, gain and phase margin, internal compensation circuitry)
2.the nature of the load impedance
3.attenuation and phase shift of the feedback circuit, including the effects of output loads, input impedances, and stray capacitances.
Among the parameters cited above, the amplifier output impedance, represented by the output resistance, RO, is the one factor that most affects performance with capacitive loads. Ideally, an otherwise stable op amp with RO = 0 will drive any capacitive load without phase degradation.
To avoid sacrificing performance with light loads, most amplifiers are not heavily compensated internally for substantial capacitive loads, so external compensation techniques must be used to optimize those applications in which a large capacitive load at the output of the op amp must be handled. Typical applications include sample-and-hold amplifiers, peak detectors, and driving unterminated coaxial cables.
Capacitive loading, as shown in Figures 1 and 2, affects the open-loop gain in the same way, regardless of whether the active input is at the noninverting or the inverting terminal: the load capacitance, CL, forms a pole with the open-loop output resistance, RO. The loaded gain can be expressed as follows:
The –20 dB/decade slope and 90° lag contributed by the pole, added to the –20 dB slope and 90° contributed by the amplifier (plus any other existing lags), results in an increase in the rate of closure (ROC) to a value of at least 40 dB per decade, which, in turn, causes instability.
This note discusses typical questions about the effects of capacitive loads on the performance of some amplifier circuits, and suggests techniques to solve the instability problems they raise.
Q: So, different circuits call for different techniques?
A: Yes, absolutely! You’ll choose the compensation technique that best suits your design. Some examples are detailed below. For example, here’s a compensation technique that has the added benefit of filtering the op amp’s noise via an RC feedback circuit.
Figure 3 shows a commonly used compensation technique, often dubbed in-the-loop compensation. A small series resistor, Rx, is used to decouple the amplifier output from CL; and a small capacitor, Cf, inserted in the feedback loop, provides a high frequency bypass around CL.
To better understand this technique, consider the redrawn feedback portion of the circuit shown in Figure 4. VB is connected to the amplifier’s minus input.

3_1005.doc

150.5 KB, 下载次数: 0 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2005-3-19 19:23:37 | 显示全部楼层

求助!

拜托大家给点希望啊,谢谢了!
3_1005_1.jpg
发表于 2005-3-21 21:56:21 | 显示全部楼层

求助!

^_^.好长啊.
 楼主| 发表于 2005-3-23 16:15:35 | 显示全部楼层

求助!

哈哈,拜托大家了,哪怕是一小段也好!
发表于 2005-12-28 21:31:17 | 显示全部楼层

求助!

Ask The Application Engineer—32
Practical Techniques to Avoid Instability Due to Capacitive Loading
By Soufiane Bendaoud, (soufiane.bendaoud@analog.com)
Giampaolo Marino (giampaolo.marino@analog.com)
Q: ADI has published a lot of information on dealing with capacitive loading and other stability issues in books, such as the amplifier seminar series, in earlier issues of Analog Dialogue, and in some design tools. But, I need a refresher—NOW.
A: OK. Here goes!
Capacitive loads often give rise to problems, in part because they can reduce the output bandwidth and slew rate, but mainly because the phase lag they produce in the op amp’s feedback loop can cause instability. Although some capacitive loading is inevitable, amplifiers are often subjected to sufficient capacitive loading to cause overshoots, ringing, and even oscillation. The problem is especially severe when large capacitive loads, such as LCD panels or poorly terminated coaxial cables, must be driven—but unpleasant surprises in precision low-frequency and dc applications can result as well.
As will be seen, the op amp is most prone to instability when it is configured as a unity-gain follower, either because (a) there is no attenuation in the loop, or (b) large common-mode swings, though not substantially affecting accuracy of the signal gain, can modulate the loop gain into unstable regions.
The ability of an op amp to drive capacitive loads is affected by several factors:
1.the amplifier’s internal architecture (for example, output impedance, gain and phase margin, internal compensation circuitry)
2.the nature of the load impedance
3.attenuation and phase shift of the feedback circuit, including the effects of output loads, input impedances, and stray capacitances.
Among the parameters cited above, the amplifier output impedance, represented by the output resistance, RO, is the one factor that most affects performance with capacitive loads. Ideally, an otherwise stable op amp with RO = 0 will drive any capacitive load without phase degradation.
To avoid sacrificing performance with light loads, most amplifiers are not heavily compensated internally for substantial capacitive loads, so external compensation techniques must be used to optimize those applications in which a large capacitive load at the output of the op amp must be handled. Typical applications include sample-and-hold amplifiers, peak detectors, and driving unterminated coaxial cables.
Capacitive loading, as shown in Figures 1 and 2, affects the open-loop gain in the same way, regardless of whether the active input is at the noninverting or the inverting terminal: the load capacitance, CL, forms a pole with the open-loop output resistance, RO. The loaded gain can be expressed as follows:
The –20 dB/decade slope and 90° lag contributed by the pole, added to the –20 dB slope and 90° contributed by the amplifier (plus any other existing lags), results in an increase in the rate of closure (ROC) to a value of at least 40 dB per decade, which, in turn, causes instability.
This note discusses typical questions about the effects of capacitive loads on the performance of some amplifier circuits, and suggests techniques to solve the instability problems they raise.
Q: So, different circuits call for different techniques?
A: Yes, absolutely! You’ll choose the compensation technique that best suits your design. Some examples are detailed below. For example, here’s a compensation technique that has the added benefit of filtering the op amp’s noise via an RC feedback circuit.
Figure 3 shows a commonly used compensation technique, often dubbed in-the-loop compensation. A small series resistor, Rx, is used to decouple the amplifier output from CL; and a small capacitor, Cf, inserted in the feedback loop, provides a high frequency bypass around CL.
To better understand this technique, consider the redrawn feedback portion of the circuit shown in Figure 4. VB is connected to the amplifier’s minus input.
发表于 2005-12-28 21:36:52 | 显示全部楼层

求助!

问申请工程师— 32
实际的技术避免是由於电容的载入不安定
藉着 Soufiane Bendaoud,(soufiane.bendaoud@analog.com)
Giampaolo Marino(giampaolo.marino@analog.com)
Q: ADI 有出版关於~的许多资讯~在书中处理 电容的载入和其他的安定争议,例如  喇叭筒研究会系列,在类比对话的比较早的争议中, 和在一些设计工具中。 但是, 我需要一现在使—生气蓬勃。
一: 好。 这里去!
电容的负荷时常引起  问题,部份因为他们能减少输出带宽和回转率,但是主要地因为时期落后他们在 op 安培的回应环中生产能引起不安定。虽然一些电容的载入是不可避免的,但是喇叭筒时常被受到充份的电容载入到因素超越量,响,和甚至振动。当大的电容装载的时候 , 问题尤其严格,例如  LCD 嵌板或身体不舒服的结束 coaxial 电缆,一定是受到驱策的—但是在精密低周波的和直流申请中的不愉快的惊奇能也产生。
同样地将会被看到,当它也被配置如一个个体- 增益从者的时候 , op 安培对~是最俯伏的不安定因为 (一) 在环中没有变薄,否则 (b) 大的通常- 模态摇摆,虽然不实质上信号增益的感人准确性,能调整环增益进不稳定的区域之内。
op 安培的能力驾驶电容的负荷被一些因素影响:
1. 喇叭筒的内在建筑学 ( 举例来说,输出阻抗,增益和时期边缘,内在的酬劳电路)
2. 负荷阻抗的性质
回应线路的 3.attenuation 和时期变化, 包括输出的效果装载,输入阻抗 , 和迷途的容量。
在叁数之中在上面引证,被输出抵抗 , RO 被表现的喇叭筒输出阻抗,是一个因素大部分用~影响表现电容的负荷。 理想的,有 RO=0 的一否则稳定的 op 安培将会驾驶没有时期降格的任何电容的负荷。
为了要避免用~牺牲表现轻的负荷,最大多数的喇叭筒不被很重地偿还在内部因为重要部份电容的装载,如此外部酬劳技术一定用来最佳化一个大的电容负荷在 op 安培的输出一定被处理那些申请。典型的申请包括样品-和-把握喇叭筒,山顶发现者和驾驶 unterminated coaxial 打海底电报。
电容的载入, 如图 1 所示和 2, 同样地影响开着的- 环增益, 不管是否活跃的输入是在 noninverting 或那反转终端机: 负荷容量, CL,有开着- 环输出抵抗的表格一个杆,RO。 被装载的增益能被表示成追从:
– 20 分贝/ 十年倾斜和 90 ° 被增加到– 20 分贝倾斜和 90 被喇叭筒 ( 加号任何其他的已存在的落后) 有助于的 ° 的被杆有助于的落后,造成对至少每十年 40 分贝的价值~增加终止 (ROC) 的比率, ,依次 ,引起不安定。
这个笔记讨论有关电容的负荷对~的效果一些喇叭筒线路的表现典型的问题, 而且提议技术解决他们升起的不安定问题。
Q: 如此,不同的线路要求不同的技术?
一: 是的,完全地! 你将会选择酬劳技术最好的适合你的设计。 一些例子是详细的在下面。 举例来说,这里是经由一个 RC 回应线路有过滤的附加利益 op 安培的噪音酬劳技术。
图 3 表演一普遍使用过的酬劳技术, 时常配音在-那-环酬劳。 一个小的系列电阻 , Rx,习惯於来自 CL 的 decouple 喇叭筒输出;而且在回应环中被插入的小电容器, Cf,在 CL 的周围提供高频率旁路。
比较了解技术,考虑在图 4 中被显示的线路 redrawn 回应部分. VB 被连接到喇叭筒的减输入。  

发表于 2005-12-28 21:39:48 | 显示全部楼层

求助!

呵呵   早看到你的帖子就好了
你为什么不知道用一些软件汉化呢?
比如说《金山快译》的全文翻译功能,很有帮助的!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条


小黑屋| 手机版| 关于我们| 联系我们| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2025-1-8 19:40 , Processed in 0.070187 second(s), 13 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表