在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 8436|回复: 35

SPREAD SPECTRUM COMMUNICATIONS HANDBOOK(邮电出版社:扩频通信技术教程)

[复制链接]
发表于 2008-1-7 21:37:42 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
SPREAD SPECTRUM COMMUNICATIONS HANDBOOK(邮电出版社:扩频通信技术教程)

Marvin K. Simon
Jet Propulsion Laboratory
PART 1 INTRODUCTION TO SPREAD-SPECTRUM
COMMUNICATIONS
Chapter 1 A Spread-Spectrum Overview 3
1.1 A Basis for a Jamming Game 3
1.2 Energy Allocation Strategies 6
1.3 Spread-Spectrum System Configurations and Components 9
1.4 Energy Gain Calculations for Typical Systems 17
1.5 The Advantages of Spectrum Spreading 20
1.5.1 Low Probability of Intercept (LPI) 20
1.5.2 Independent Interference Rejection and
Multiple-Access Operation 25
1.5.3 High-Resolution Time-of-Arrival (TOA)
Measurements 29
1.6 Design Issues 37
1.7 References 38
1.7.1 Books on Communication Theory 38
1.7.2 Books on Resolution and Ambiguity Functions 39
1.7.3 Recent Books and Proceedings on Spread-Spectrum
Communications 39
1.7.4 Spread-Spectrum Tutorials and General
Interest Papers 39
Chapter 2 The Historical Origins of Spread-Spectrum
Communications 41
2.1 Emerging Concepts 42
2.1.1 Radar Innovations 42
2.1.2 Developments in Communication Theory 45
2.1.3 Correlator Mechanization 47
2.1.4 Protected Communications 48
2.1.5 Remote Control and Missile Guidance 58
2.2 Early Spread-Spectrum Systems 65
2.2.1 WHYN 65
2.2.2 A Note on CYTAC 71
2.2.3 Hush-Up 71
2.2.4 BLADES 73
2.2.5 Noise Wheels 78
2.2.6 The Hartwell Connection 84
2.2.7 NOMAC 87
2.2.8 F9C-A/Rake 90
2.2.9 A Note on PPM 100
2.2.10 CODORAC 100
2.2.11 M-Sequence Genesis 106
2.2.12 AN/ARC-50 Development at Magnavox 108
2.3 Branches on the SS Tree 111
2.3.1 Spread-Spectrum Radar 111
2.3.2 Other Early Spread-Spectrum
Communication Systems 112
2.3.3 Spread-Spectrum Developments Outside
the United States 121
2.4 A Viewpoint 123
2.5 References 125
Chapter 3 Basic Concepts and System Models 137
3.1 Design Approach for Anti-Jam Systems 137
3.2 Models and Fundamental Parameters 139
3.3 Jammer Waveforms 141
3.3.1 Broadband and Partial-Band Noise Jammers 141
3.3.2 CW and Multitone Jammers 143
3.3.3 Pulse Jammer 143
3.3.4 Arbitrary Jammer Power Distributions 143
3.3.5 Repeat-Back Jammers 144
3.4 Uncoded Direct-Sequence Spread Binary Phase-Shift-Keying 144
3.4.1 Constant Power Broadband Noise Jammer 147
3.4.2 Pulse Jammer 150
3.5 Coded Direct-Sequence Spread Binary Phase-Shift-Keying 153
3.5.1 Interleaver and Deinterleaver 158
3.5.2 Unknown Channel State 159
3.5.2.1 Soft Decision Decoder 160
3.5.2.2 Hard Decision Decoder 162
3.5.3 Known Channel State 165
3.5.3.1 Soft Decision Decoder 166
3.5.3.2 Hard Decision Decoder 168
3.6 Uncoded Frequency-Hopped Binary
Frequency-Shift-Keying 169
iv Contents
3.6.1 Constant Power Broadband Noise Jammer 172
3.6.2 Partial-Band Noise Jammer 174
3.6.3 Multitone Jammer 176
3.7 Coded Frequency-Hopped Binary Frequency-Shift-Keying 178
3.8 Interleaver/Hop Rate Tradeoff 180
3.9 Receiver Noise Floor 180
3.10 Discussion 183
3.11 References 183
Appendix 3A: Interleaving and Deinterleaving 184
Chapter 4 General Analysis of Anti-Jam Communication Systems 189
4.1 System Model 190
4.2 Coded Bit Error Rate Bound 194
4.3 Cutoff Rates 196
4.4 Conventional Coherent BPSK 198
4.5 DS/BPSK and Pulse Jamming 204
4.6 Translation of Coded Error Bounds 205
4.7 Conventional Non-Coherent MFSK 208
4.7.1 Uncoded 208
4.7.2 Coded 213
4.8 FH/MFSK and Partial-Band Jamming 217
4.9 Diversity for FH/MFSK 227
4.10 Concatenation of Codes 235
4.10.1 Binary Super Channel 235
4.10.2 M-ary Super Channel 238
4.10.3 Reed-Solomon Outer Codes 238
4.11 Summary of Bit Error Bounds 246
4.11.1 DS/BPSK with Pulse Jamming 246
4.11.2 FH/MFSK with Partial-Band Noise Jamming 247
4.11.3 Coding Functions 249
4.12 References 249
Appendix 4A: Chernoff Bound 250
Appendix 4B: Factor of One-Half in Error Bounds 251
Appendix 4C: Reed-Solomon Code Performance 260
Chapter 5 Pseudonoise Generators 264
5.1 The Storage/Generation Problem 264
5.2 Linear Recursions 271
5.2.1 Fibonacci Generators 271
5.2.2 Formal Power Series and Characteristic Polynomials 273
5.2.3 Galois Generators 275
5.2.4 State Space Viewpoint 278
5.2.5 Determination of Linear Recursions from
Sequence Segments 280
Contents v
5.3 Memory-Efficient Linear Generators 281
5.3.1 Partial Fraction Decompositions 281
5.3.2 Maximization of Period for a Fixed Memory Size 283
5.3.3 Repeated Factors in the Characteristic Polynomial 284
5.3.4 M-Sequences 285
5.4 Statistical Properties of M-Sequences 286
5.4.1 Event Counts 287
5.4.2 The Shift-and-Add Property 288
5.4.3 Hamming Distance Properties of Derived
Real-Integer Sequences 289
5.4.4 Correlation Properties of Derived Complex
Roots-of-Unity Sequences 291
5.5 Galois Field Connections 297
5.5.1 Extension Field Construction 297
5.5.2 The LFSR as a Galois Field Multiplier 298
5.5.3 Determining the Period of Memory Cell Outputs 299
5.5.4 The Trace Representation of M-Sequences 301
5.5.5 A Correlation Computation 304
5.5.6 Decimations of Sequences 305
5.6 Non-Linear Feed-Forward Logic 307
5.6.1 A Powers-of-a Representation Theorem 307
5.6.2 Key’s Bound on Linear Span 311
5.6.3 Difference Set Designs 315
5.6.4 GMW Sequences 317
5.7 Direct-Sequence Multiple-Access Designs 326
5.7.1 A Design Criterion 326
5.7.2 Welch’s Inner Product Bound 327
5.7.3 Cross-correlation of Binary M-Sequences 329
5.7.4 Linear Designs 334
5.7.5 A Transform-Domain Design Philosophy 340
5.7.6 Bent Sequences 344
5.8 Frequency-Hopping Multiple-Access Designs 352
5.8.1 Design Criteria 352
5.8.2 A Bound on Hamming Distance 353
5.8.3 An FHMA Design Employing an M-Sequence
Generator 354
5.8.4 Reed-Solomon Sequences 355
5.9 A Look at the Literature 360
5.10 References 362
Appendix 5A: Finite Field Arithmetic 367
Appendix 5B: Factorizations of 2n—1 and Selected
Primitive Polynomials 398
vi Contents
PART 2 CLASSICAL SPREAD-SPECTRUM
COMMUNICATIONS
Chapter 1 Coherent Direct Sequence Systems 405
1.1 Direct-Sequence Spread Coherent Binary Phase-Shift
Keying 407
1.2 Uncoded Bit Error Probability for Arbitrary Jammer
Waveforms 409
1.2.1 Chernoff Bound 410
1.2.2 Gaussian Assumptions 411
1.3 Uncoded Bit Error Probability for Specific Jammer
Waveforms 412
1.3.1 CW Jammer 414
1.3.2 Random Jammer 416
1.4 Pulse Jamming 418
1.4.1 Arbitrary Time Distribution 418
1.4.2 Worst Case Jammer 420
1.5 Standard Codes and Cutoff Rates 422
1.5.1 The Additive White Gaussian Noise Channel 422
1.5.2 Jamming Channels 424
1.6 Slow Frequency Non-Selective Fading Channels 428
1.6.1 Continuous Jammer with No Coding 428
1.6.2 Continuous Jammer with Coding—No Fading
Estimate 430
1.6.3 Continuous Jammer with Coding—Fading
Estimate 436
1.6.4 Pulse Jammer with No Coding 441
1.7 Slow Fading Multipath Channels 442
1.8 Other Coding Metrics for Pulse Jamming 453
1.9 Discussion 460
1.10 References 462
Chapter 2 Non-Coherent Frequency-Hopped Systems 464
2.1 Broadband Noise Jamming 471
2.2 Worst Case Jamming 475
2.2.1 Partial-Band Noise Jamming 475
2.2.2 Multitone Jamming 480
2.2.2.1 Random Jamming Tone Phase 483
2.2.2.2 Band Multitone Jamming 484
2.2.2.3 Independent Multitone Jamming 493
2.3 Coding Countermeasures 497
2.3.1 Time Diversity 497
2.3.1.1 Partial-Band Noise Jamming 500
2.3.1.2 Band Multitone Jamming 512
2.3.1.3 Independent Multitone Jamming 535
Contents vii
2.3.1.4 Time Diversity Overview 540
2.3.2 Coding Without Diversity 546
2.3.2.1 Convolutional Codes 547
2.3.2.2 Reed-Solomon Codes 562
2.3.2.3 Concatenated Codes 565
2.3.3 Coding With Diversity 567
2.3.3.1 Optimum Code Rates 593
2.4 Slow Fading Uniform Channels 600
2.4.1 Broadband Jamming—No Diversity 602
2.4.2 Broadband Jamming—Diversity and Coding 604
2.4.3 Partial-Band Jamming 612
2.5 Worst Noise Jammer Distribution—Slow Fading
Uniform Channel 615
2.5.1 Uncoded 615
2.5.2 Diversity and Coding 619
2.6 Worst Noise Jammer Distribution—Slow Fading
Nonuniform Channel 622
2.6.1 Uncoded 623
2.6.2 Diversity and Coding 626
2.7 Other Coding Metrics 630
2.7.1 Energy Quantizer 633
2.7.2 Hard Decision with One Bit Quality Measure 636
2.7.3 List Metric 641
2.7.4 Metrics for Binary Codes 652
2.8 References 660
Appendix 2A: Justification of Factor of 1/2 for FH/MFSK Signals
with Diversity in Partial-Band Noise 662
Appendix 2B: Combinatorial Computation for n  1 Band
Multitone Jamming 664
PART 3 OTHER FREQUENCY-HOPPED SYSTEMS
Chapter 1 Coherent Modulation Techniques 669
1.1 Performance of FH/QPSK in the Presence of Partial-
Band Multitone Jamming 670
1.2 Performance of FH/QASK in the Presence of Partial-
Band Multitone Jamming 680
1.3 Performance of FH/QPSK in the Presence of Partial-
Band Noise Jamming 687
1.4 Performance of FH/QASK in the Presence of Partial-
Band Noise Jamming 690
1.5 Performance of FH/PN/QPSK in the Presence of
Partial-Band Multitone Jamming 693
1.6 Performance of FH/PN/QASK in the Presence of
Partial-Band Multitone Jamming 698
viii Contents
1.7 Performance of FH/QPR in the Presence of Partial-
Band Multitone Jamming 699
1.8 Performance of FH/QPR in the Presence of Partial-
Band Multitone Jamming 710
1.9 Summary and Conclusions 713
1.10 References 713
Chapter 2 Differentially Coherent Modulation Techniques 715
2.1 Performance of FH/MDPSK in the Presence of Partial-
Band Multitone Jamming 716
2.1.1 Evaluation of Q2pn/m 719
2.2 Performance of FH/MDPSK in the Presence of Partial-
Band Noise Jamming 728
2.3 Performance of DQASK in the Presence of Additive
White Gaussian Noise 731
2.3.1 Characterization of the Transmitted Signal 31
2.3.2 Receiver Characterization and Performance 732
2.4 Performance of FH/DQASK in the Presence of
Partial-Band Multitone Jamming 739
2.5 Performance of FH/DQASK in the Presence of
Partial-Band Noise Jamming 748
2.6 References 749
PART 4 SYNCHRONIZATION OF SPREAD-SPECTRUM
SYSTEMS
Chapter 1 Pseudonoise Acquisition in Direct Sequence Receivers 753
1.1 Historical Survey 753
1.2 The Single Dwell Serial PN Acquisition System 765
1.2.1 Markov Chain Acquisition Model 767
1.2.2 Single Dwell Acquisition Time Performance in the
Absence of Code Doppler 770
1.2.3 Single Dwell Acquisition Time Performance in the
Presence of Code Doppler and Doppler Rate 777
1.2.4 Evaluation of Detection Probability PD and False
Alarm Probability PFA in Terms of PN Acquisition
System Parameters 781
1.2.5 Effective Probability of Detection and Timing
Misalignment 785
1.2.6 Modulation Distortion Effects 786
1.2.7 Reduction in Noise Spectral Density Caused by
PN Despreading 786
1.2.8 Code Doppler and Its Derivative 787
1.2.9 Probability of Acquisition for the Single
Dwell System 789
Contents ix
1.3 The Multiple Dwell Serial PN Acquisition System 794
1.3.1 Markov Chain Acquisition Model 798
1.3.2 Multiple Dwell Acquisition Time Performance 801
1.4 A Unified Approach to Serial Search Acquisition with
Fixed Dwell Times 811
1.4.1 The Flow Graph Technique 811
1.5 Rapid Acquisition Using Matched Filter Techniques 817
1.5.1 Markov Chain Acquisition Model and Acquisition
Time Performance 824
1.5.2 Evaluation of Detection and False Alarm
Probabilities for Correlation and Coincidence
Detectors 827
1.5.2.1 Exact Results 829
1.5.2.2 Approximate Results 831
1.5.2.3 Acquisition Time Performance 833
1.6 PN Sync Search Procedures and Sweep Strategies for a
Non-Uniformly Distributed Signal Location 834
1.6.1 An Example—Single Dwell Serial Acquisition with
an Optimized Expanding Window Search 838
1.6.2 Application of the Circular State Diagram
Approach 843
1.7 PN Synchronization Using Sequential Detection 860
1.7.1 A Brief Review of Sequential Hypothesis Testing
as Applied to the Non-Coherent Detection of
a Sine Wave in Gaussian Noise 864
1.7.2 The Biased Square-Law Sequential Detector 867
1.7.3 Probability of False Alarm and Average Test
Duration in the Absence of Signal 868
1.7.4 Simulation Results 877
1.8 Search/Lock Strategies 885
1.8.1 Mean and Variance of the Acquisition Time 887
1.8.1.1 Evaluation of Probability Lock 890
1.8.1.2 Evaluation of Mean Dwell Time 891
1.8.2 Another Search/Lock Strategy 896
1.9 Further Discussion 898
1.10 References 899
Chapter 2 Pseudonoise Tracking in Direct Sequence Receivers 903
2.1 The Delay-Locked Loop 904
2.1.1 Mathematical Loop Model and Equation of
Operation 904
2.1.2 Statistical Characterization of the Equivalent
Additive Noise 909
2.1.3 Linear Analysis of DLL Tracking Performance 911
2.2 The Tau-Dither Loop 915
x Contents
2.2.1 Mathematical Loop Model and equation of
Operation 916
2.2.2 Statistical Characterization of the Equivalent
Additive Noise 920
2.2.3 Linear Analysis of TDL Tracking Performance 922
2.3 Acquisition (Transient) Behavior of the DLL and TDL 928
2.4 Mean Time to Loss-of-Lock for the DLL and TDL 933
2.5 The Double Dither Loop 935
2.6 The Product of Sum and Difference DLL 937
2.7 The Modified Code Tracking Loop 941
2.8 The Complex Sums Loop (A Phase-Sensing DLL) 948
2.9 Quadriphase PN Tracking 949
2.10 Further Discussion 952
2.11 References 956
Chapter 3 Time and Frequency Synchronization of
Frequency-Hopped Receivers 958
3.1 FH Acquisition Techniques 959
3.1.1 Serial Search Techniques with Active Correlation 959
3.1.2 Serial Search Techniques with Passive Correlation 983
3.1.3 Other FH Acquisition Techniques 985
3.2 Time Synchronization of Non-Coherent FH/MFSK
Systems 989
3.2.1 The Case of Full-Band Noise jamming 992
3.2.1.1 Signal Model and Spectral Computations 992
3.2.1.2 Results of Large Nh 997
3.2.2 The Case of Partial-Band Noise Jamming 999
3.2.2.1 Results of Large Nh 1000
3.2.3 The Effects of Time Synchronization Error on
FH/MFSK Error Probability Performance 1001
3.2.3.1 Conditional Error Probability
Performance—No Diversity 1002
3.2.3.2 Conditional Error Probability
Performance—m-Diversity with
Non-Coherent Combining 1006
3.2.3.3 Average Error Probability Performance
in the Presence of Time Synchronization
Error Estimation 1009
3.3 Frequency Synchronization of Non-Coherent FH/MFSK
Systems 1011
3.3.1 The Case of Full-Band Noise Jamming 1013
3.3.1.1 Signal Model and Spectral Computations 1013
3.3.2 The Case of Partial-Band Noise Jamming 1017
3.3.3 The Effects of Frequency Synchronization
Error on FH/MFSK Error Probability Performance 1017
Contents xi
3.3.3.1 Average Error Probability Performance
in the Presence of Frequency
Synchronization Error Estimation 1022
3.4 References
Appendix 3A: To Prove That a Frequency Estimator Based
upon Adjacent Spectral Estimates Taken at
Integer Multiples of 1/T Cannot be Unbiased 1026
PART 5 SPECIAL TOPICS
Chapter 1 Low Probability of Intercept Communications 1033
1.1 Signal Modulation Forms 1035
1.2 Interception Detectors 1036
1.2.1 Ideal and Realizable Detectors 1037
1.2.1.1 Detectability Criteria 1037
1.2.1.2 Maximum or Bounding Performance of
Fundamental Detector Types 1037
(1) Wideband Energy Detector
(Radiometer) 1038
(2) Optimum Multichannel FH
Pulse-Matched Energy Detector 1040
(3) Filter Bank Combiner (FBC) Detector 1045
(4) Partial-band Filter Bank Combiner
(PB-FBC) 1050
1.2.1.3 Signal Structures and Modulation
Considerations 1055
1.2.2 Non-idealistic Detector Performance 1059
1.2.2.1 The Problem of Time Synchronization 1059
(1) Wideband Detector with Overlapping
I & Ds Each of Duration Equal to
That of the Message 1059
(2) Wideband Detector with Single
(Non-overlapping) I & D of
Duration Equal to Half of the
Message Duration 1063
(3) Wideband Detector with a
Continuous Integration Post-
Detection RC Filter 1064
(4) Filter Bank Combiner with
Overlapping I & Ds Each of Hop
Interval Duration 1066
1.2.2.2 The Problem of Frequency
Synchronization 1070
(1) Doppler Effects 1070
(2) Performance of the FBC with
Frequency Error 1070
xii Contents
1.2.3 Detector Implementation 1074
1.2.3.1 Basic Configurations 1074
(1) Wideband Single-Channel
Detectors 1074
(2) Channelized Detectors 1076
1.2.3.2 Other Possible Feature Detector
Configurations 1077
1.3 Performance and Strategies Assessment 1083
1.3.1 Communicator Modulation and Intercept
Detectors 1083
1.3.2 Anti-Jam Measures 1087
1.3.3 Optimum LPI Modulation/Coding Conditions 1089
1.4 Further Discussion 1089
1.5 References 1092
Appendix 1A: Conditions for Viable Multichannel Detector
Performance 1093
Chapter 2 Multiple Access 1096
2.1 Networks 1099
2.1.1 Decentralized (Point-to-Point) Networks 1099
2.1.2 Centralized (Multipoint-to-Point) Networks 1103
2.2 Summary of Multiple Access Techniques 1105
2.3 Spread-Spectrum Multiple Access with DS/BPSK
Waveforms 1110
2.3.1 Point-to-Point 1110
2.3.2 Conventional Multipoint-to-Point 1113
2.3.3 Optimum Multipoint-to-Point 1116
2.4 Spread-Spectrum Multiple Access with FH/MFSK
Waveforms 1123
2.4.1 Point-to-Point 1124
2.4.2 Conventional Multipoint-to-Point 1136
2.4.3 Optimum Multipoint-to-Point 1142
2.5 Discussion 1148
2.6 References 1148
Chapter 3 Commercial Applications 1158
3.1 Key Events in the Commercial Market 1160
3.2 The United States FCC Part 15 Rules 1160
3.2.1 Indoor Applications 1161
3.2.2 Outdoor Applications 1162
3.2.3 Direct Sequence Versus Frequency Hopping 1162
3.2.3.1 Conversion of Narrowband Radios 1163
3.2.3.2 Cost of Development and Products 1163
3.2.3.3 Performance 1163
3.2.4 Multipath and Diversity 1165
3.2.5 Results of The Part 15 Rule 1166
Contents xiii
3.3 The Digital Cellular CDMA Standard 1169
3.3.1 Overview of the CDMA Digital Cellular
System (IS-95) 1170
3.3.2 Comparison of IS-95, IS-54, and GSM 1172
3.4 A New Paradigm for Designing Radio Networks 1173
3.5 The Potential Capacity of Direct Sequence Spread
Spectrum CDMA in High-Density Networks 1176
3.5.1 Data Versus Voice Applications 1179
3.5.2 Power Control 1179
3.5.3 Time Synchronization and Orthogonal Codes 1179
3.5.4 The Outbound Channel 1180
3.5.5 Frequency Reuse and Antenna Sectorization 1181
3.5.6 Narrowbeam and Delay-line Antennas 1181
3.6 Spread Spectrum CDMA for PCS/PCN 1182
3.6.1 Binary Orthogonal Codes 1183
3.6.2 S-CDMA Equivalent to Bit-Level TDMA 1183
3.6.3 A High-Density Voice PCS System 1186
3.6.3.1 Bit-Error Probabilities 1188
3.6.3.2 Computer Simulations 1191
3.6.3.3 Other System Issues 1192
3.6.3.4 Comparison with DECT 1193
3.7 Higher Capacity Optional Receivers 1194
3.8 Summary 1195
3.9 References 1196
Appendix 3A: Multipath and Diversity 1198
Appendix 3B: Error Bounds for Interference-Limited Channels 1208

Spread.Spectrum.Communications.Handbook.part01.rar

1.43 MB, 下载次数: 111 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-1-7 21:44:23 | 显示全部楼层

这可是Marvin K. Simon(西蒙)的巨作阿

今天网速慢,后面的章节继续上载。
发表于 2008-1-9 20:38:26 | 显示全部楼层
太贵了,书不错。
发表于 2008-1-11 20:28:50 | 显示全部楼层
M. Simon是美国JPL通信首席科学家,OMURA(小村)和Viterbi创立了Linkbit公司,4位作者都是扩频通信的大牛,搞扩频通信,尤其是抗干扰扩频通信的人应该好好读读该书,谢谢楼主共享!
发表于 2008-1-14 15:59:16 | 显示全部楼层
怎么只有一部分?
发表于 2008-1-14 17:12:50 | 显示全部楼层
正在拜读...............
发表于 2008-1-14 18:19:52 | 显示全部楼层
请尽快送上来!
发表于 2008-1-15 01:57:49 | 显示全部楼层
楼主,做人要厚道,快点上传!
发表于 2008-1-16 20:47:04 | 显示全部楼层
发表于 2008-1-16 20:48:17 | 显示全部楼层
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条

小黑屋| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-5-4 07:47 , Processed in 0.028506 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表