| 
 | 
 
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册  
 
×
 
 本帖最后由 eecsseudl 于 2013-4-29 10:05 编辑  
 
下面是求SNR的代码,但是我实在是没看懂,望高人能指点一下,具体各个部分都是干什么的 
function SNR=cal_snr(v1) 
v1=v1';  
code=v1(:,2); 
numbit=14; 
numpt=length(code); 
fclk=50e6 
%Display a warning, when the input generates a code greater than full-scale 
if (max(code)==2^numbit-1) | (min(code)==0) 
disp('Warning: ADC may be clipping!!!');  
end  
 
%Plot results in the time domain 
%figure; 
%plot([1:numpt],code); 
%title('TIME DOMAIN') 
%xlabel('SAMPLES'); 
%ylabel('DIGITAL OUTPUT CODE');  
 
%Recenter the digital sine wave  
Dout=code-(2^numbit-1)/2; 
 
%If no window function is used, the input tone must be chosen to be unique and with  
%regard to the sampling frequency. To achieve this prime numbers are introduced and the 
%input tone is determined by fIN = fSAMPLE * (Prime Number / Data Record Size).  
%To relax this requirement, window functions such as HANNING and HAMING (see below) can 
%be introduced, however the fundamental in the resulting FFT spectrum appears 'sharper' 
%without the use of window functions.  
Doutw=Dout; 
Doutw=Dout.*hanning(numpt); 
%Doutw=Dout.*hamming(numpt);  
 
%Performing the Fast Fourier Transform  
Dout_spect=fft(Doutw);  
 
%Recalculate to dB  
Dout_dB=20*log10(abs(Dout_spect)); 
 
%Display the results in the frequency domain with an FFT plot  
%figure;  
maxdB=max(Dout_dB(1:numpt/2)); 
 
%For TTIMD, use the following short routine, normalized to —6.5dB full-scale. 
%plot([0:numpt/2-1].*fclk/numpt,Dout_dB(1:numpt/2)-maxdB-6.5); 
 
%plot([0:numpt/2-1].*fclk/numpt,Dout_dB(1:numpt/2)-maxdB);  
%grid on;  
%title('FFT PLOT');  
%xlabel('ANALOG INPUT FREQUENCY (MHz)'); 
%ylabel('AMPLITUDE (dB)'); 
%a1=axis; axis([a1(1) a1(2) -120 a1(4)]);  
 
%Calculate SNR, SINAD, THD and SFDR values 
%Find the signal bin number, DC = bin 1 
fin=find(Dout_dB(1:numpt/2)==maxdB)  
%Span of the input frequency on each side  
span=max(2);  
%Approximate search span for harmonics on each side  
spanh=2; 
%Determine power spectrum 
spectP=(abs(Dout_spect)).*(abs(Dout_spect));  
%Find DC offset power  
Pdc=sum(spectP(1:span));  
%Extract overall signal power  
Ps=sum(spectP(fin-span:fin+span)); 
%Vector/matrix to store both frequency and power of signal and harmonics 
Fh=[];  
%The 1st element in the vector/matrix represents the signal, the next element represents 
%the 2nd harmonic, etc. 
Ph=[];  
 
%Find harmonic frequencies and power components in the FFT spectrum  
for har_num=1:10 
%Input tones greater than fSAMPLE are aliased back into the spectrum 
tone=rem((har_num*(fin-1)+1)/numpt,1);  
if tone>0.5  
%Input tones greater than 0.5*fSAMPLE (after aliasing) are reflected 
tone=1-tone; 
end  
Fh=[Fh tone];  
%For this procedure to work, ensure the folded back high order harmonics do not overlap  
%with DC or signal or lower order harmonics  
har_peak=max(spectP(round(tone*numpt)-spanh:round(tone*numpt)+spanh));  
har_bin=find(spectP(round(tone*numpt)-spanh:round(tone*numpt)+spanh)==har_peak); 
har_bin=har_bin+round(tone*numpt)-spanh-1; 
Ph=[Ph sum(spectP(har_bin-1:har_bin+1))];  
end 
 
%Determine the total distortion power  
Pd=sum(Ph(2:5));  
%Determine the noise power  
Pn=sum(spectP(1:numpt/2))-Pdc-Ps-Pd; 
 
format; 
A=(max(code)-min(code))/2^numbit;  
AdB=20*log10(A); 
SINAD=10*log10(Ps/(Pn+Pd)); 
SNR=10*log10(Ps/Pn);  
%disp('THD is calculated from 2nd through 5th order harmonics'); 
%THD=10*log10(Pd/Ph(1)) 
%SFDR=10*log10(Ph(1)/max(Ph(2:10)))  
%disp('Signal & Harmonic Power Components:'); 
%HD=10*log10(Ph(1:10)/Ph(1)) 
 
%Distinguish all harmonics locations within the FFT plot 
%hold on;  
%plot(Fh(2)*fclk,0,'mo',Fh(3)*fclk,0,'cx',Fh(4)*fclk,0,'r+',Fh(5)*fclk,0,'g*', Fh(6)*fclk,0,'bs',Fh(7)*fclk,0,'bd',Fh(8)*fclk,0,'kv',Fh(9)*fclk,0,'y^'); 
%legend('1st','2nd','3rd','4th','5th','6th','7th','8th','9th'); 
%hold off;  
 
%Dynamic-Range Specifications, TTIMD  
 
%Two-tone IMD can be a tricky measurement, because the additional equipment required (a power combiner to combine two input frequencies) can contribute unwanted intermodulation products that falsify the ADC's intermodulation distortion. You must observe the following conditions to optimize IMD performance, although they make the selection of proper input frequencies a tedious task.  
 
%First, the input tones must fall into the passband of the input filter. If these tones are close together (several tens or hundreds of kilohertz for a megahertz bandwidth), an appropriate window function must be chosen as well. Placing them too close together, however, may allow the power combiner to falsify the overall IMD readings by contributing unwanted 2nd- and 3rd-order IMD products (depending on the input tones' location within the passband). Spacing the input tones too far apart may call for a different window type that has less frequency resolution.  
 
%The setup also requires a minimum of three phase-locked signal generators. This requirement seldom poses a problem for test labs, but generators have different capabilities for matching frequency and amplitude. Compensating such mismatches to achieve (for example) a -0.5dB FS two-tone envelope and signal amplitudes of -6.5dB FS will increase your effort and test time (see the following program-code extraction).  
 
%For TTIMD, use the following short routine, normalized to -6.5dB full-scale. 
%plot([0:numpt/2-1].*fclk/numpt,Dout_dB(1:numpt/2)-maxdB-6.5);  
 
%plot([0:numpt/2-1].*fclk/numpt,Dout_dB(1:numpt/2)-maxdB);  
%grid on; 
%title('FFT PLOT'); 
%xlabel('ANALOG INPUT FREQUENCY (MHz)'); 
%ylabel('AMPLITUDE (dB)'); 
%a1=axis; axis([a1(1) a1(2) -120 a1(4)]); 
 
 
 
 
 
 
 
  |   
 
 
 
 |