在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 8220|回复: 26

[资料] Python高性能编程

[复制链接]
发表于 2021-7-31 10:06:32 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
目录:
内容提要

前言

作者简介

封面简介

第1章 理解高性能Python

1.1 基本的计算机系统

1.1.1 计算单元

1.1.2 存储单元

1.1.3 通信层

1.2 将基本的元素组装到一起

理想计算模型和Python虚拟机

1.3 为什么使用Python

第2章 通过性能分析找到瓶颈

2.1 高效地分析性能

2.2 Julia集合的介绍

2.3 计算完整的Julia集合

2.4 计时的简单方法——打印和修饰

2.5 用UNIX的time命令进行简单的计时

2.6 使用cProfile模块

2.7 用runsnakerun对cProfile的输出进行可视化

2.8 用line_profiler进行逐行分析

2.9 用memory_profiler诊断内存的用量

2.10 用heapy调查堆上的对象

2.11 用dowser实时画出变量的实例

2.12 用dis模块检查CPython字节码

不同的方法,不同的复杂度

2.13 在优化期间进行单元测试保持代码的正确性

No-op的@profile修饰器

2.14 确保性能分析成功的策略

2.15 小结

第3章 列表和元组

3.1 一个更有效的搜索

3.2 列表和元组

3.2.1 动态数组:列表

3.2.2 静态数组:元组

3.3 小结

第4章 字典和集合

4.1 字典和集合如何工作

4.1.1 插入和获取

4.1.2 删除

4.1.3 改变大小

4.1.4 散列函数和熵

4.2 字典和命名空间

4.3 小结

第5章 迭代器和生成器

5.1 无穷数列的迭代器

5.2 生成器的延迟估值

5.3 小结

第6章 矩阵和矢量计算

6.1 问题介绍

6.2 Python列表还不够吗

分配次数太多带来的问题

6.3 内存碎片

6.3.1 理解perf

6.3.2 根据perf输出做出抉择

6.3.3 使用numpy

6.4 用numpy解决扩散问题

6.4.1 内存分配和就地操作

6.4.2 选择优化点:找到需要被修正的地方

6.5 numexpr:让就地操作更快更简单

6.6 告诫故事:验证你的“优化”(scipy)

6.7 小结

第7章 编译成C

7.1 可能获得哪种类型的速度提升

7.2 JIT和AOT编译器的对比

7.3 为什么类型检查有助代码更快运行

7.4 使用C编译器

7.5 复习Julia集的例子

7.6 Cython

7.6.1 使用Cython编译纯Python版本

7.6.2 Cython注解来分析代码块

7.6.3 增加一些类型注解

7.7 Shed Skin

7.7.1 构建扩展模块

7.7.2 内存拷贝的开销

7.8 Cython和numpy

在一台机器上使用OpenMP来做并行解决方案

7.9 Numba

7.10 Pythran

7.11 PyPy

7.11.1 垃圾收集的差异

7.11.2 运行PyPy并安装模块

7.12 什么时候使用每种工具

7.12.1 其他即将出现的项目

7.12.2 一个图像处理单元(GPU)的注意点

7.12.3 一个对未来编译器项目的展望

7.13 外部函数接口

7.13.1 ctypes

7.13.2 cffi

7.13.3 f2py

7.13.4 CPython模块

7.14 小结

第8章 并发

8.1 异步编程介绍

8.2 串行爬虫

8.3 gevent

8.4 tornado

8.5 AsyncIO

8.6 数据库的例子

8.7 小结

第9章 multiprocessing模块

9.1 multiprocessing模块综述

9.2 使用蒙特卡罗方法来估算pi

9.3 使用多进程和多线程来估算pi

9.3.1 使用Python对象

9.3.2 并行系统中的随机数

9.3.3 使用numpy

9.4 寻找素数

工作队列

9.5 使用进程间通信来验证素数

9.5.1 串行解决方案

9.5.2 Naïve Pool解决方案

9.5.3 Less Naïve Pool解决方案

9.5.4 使用Manager.Value作为一个标记

9.5.5 使用Redis作为一个标记

9.5.6 使用RawValue作为一个标记

9.5.7 使用mmap作为一个标记

9.5.8 使用mmap作为一个标记的终极效果

9.6 用multiprocessing来共享numpy数据

9.7 同步文件和变量访问

9.7.1 文件锁

9.7.2 给Value加锁

9.8 小结

第10章 集群和工作队列

10.1 集群的益处

10.2 集群的缺陷

10.2.1 糟糕的集群升级策略造成华尔街损失4.62亿美元

10.2.2 Skype的24小时全球中断

10.3 通用的集群设计

10.4 怎样启动一个集群化的解决方案

10.5 使用集群时避免痛苦的方法

10.6 三个集群化解决方案

10.6.1 为简单的本地集群使用Parallel Python模块

10.6.2 使用IPython Parallel来支持研究

10.7 为鲁棒生产集群的NSQ

10.7.1 队列

10.7.2 发布者/订阅者

10.7.3 分布式素数计算器

10.8 看一下其他的集群化工具

10.9 小结

第11章 使用更少的RAM

11.1 基础类型的对象开销高

Array模块以廉价的方式存储了许多基础对象

11.2 理解集合中的RAM使用

11.3 字节和Unicode的对比

11.4 高效地在RAM中存储许多文本

在800万个符号上尝试这些方法

11.5 使用更少RAM的窍门

11.6 概率数据结构

11.6.1 使用1字节的Morris计数器来做近似计数

11.6.2 K最小值

11.6.3 布隆过滤器

11.6.4 LogLog计数器

11.6.5 真实世界的例子

第12章 现场教训

12.1 自适应实验室(Adaptive Lab)的社交媒体分析(SoMA)

12.1.1 自适应实验室(Adaptive Lab)使用的Python

12.1.2 SoMA的设计

12.1.3 我们的开发方法论

12.1.4 维护SoMA

12.1.5 对工程师同行的建议

12.2 使用RadimRehurek.com让深度学习飞翔

12.2.1 最佳时机

12.2.2 优化方面的教训

12.2.3 总结

12.3 在Lyst.com的大规模产品化的机器学习

12.3.1 Python在Lyst的地位

12.3.2 集群设计

12.3.3 在快速前进的初创公司中做代码评估

12.3.4 构建推荐引擎

12.3.5 报告和监控

12.3.6 一些建议

12.4 在Smesh的大规模社交媒体分析

12.4.1 Python在Smesh中的角色

12.4.2 平台

12.4.3 高性能的实时字符串匹配

12.4.4 报告、监控、调试和部署

12.5 PyPy促成了成功的Web和数据处理系统

12.5.1 先决条件

12.5.2 数据库

12.5.3 Web应用

12.5.4 OCR和翻译

12.5.5 任务分发和工作者

12.5.6 结论

12.6 在Lanyrd.com中的任务队列

12.6.1 Python在Lanyrd中的角色

12.6.2 使任务队列变高性能

12.6.3 报告、监控、调试和部署

12.6.4 对开发者同行的建议


Python高性能编程.pdf (16.9 MB, 下载次数: 220 )




发表于 2021-7-31 11:01:31 | 显示全部楼层
Thank you very much.
发表于 2021-7-31 19:15:02 | 显示全部楼层
kankan
发表于 2021-8-11 09:12:55 | 显示全部楼层
谢谢分享
发表于 2022-1-4 22:47:27 | 显示全部楼层
已下载,谢谢
发表于 2022-1-5 07:51:25 | 显示全部楼层
谢谢分享
发表于 2022-1-6 01:37:19 | 显示全部楼层
谢谢分享
发表于 2022-1-6 09:58:42 | 显示全部楼层
多谢分享
发表于 2022-1-6 15:40:33 | 显示全部楼层
谢谢分享
发表于 2022-5-19 14:33:49 | 显示全部楼层

Thank you very much.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条


小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-11-14 12:11 , Processed in 0.023933 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表