在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 6901|回复: 28

[资料] 互连线及微带线设计基础(Foundations of Interconnect and Microstrip Design third edition)

[复制链接]
发表于 2019-7-8 11:14:21 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
互连线及微带线设计基础(Foundations of Interconnect and Microstrip Design third edition)

封面

封面

说明:英文教材外加三章的中文翻译。第一章:互连线上的信号传输基本理论
第二章 数字系统的片上连线
第三章 互连线技术


About this boo[size=1.75]kBuilding on the success of the previous two editions Foundations of
Interconnect and Microstrip Design offers extensive new, updated and
revised material based upon the latest research. In addition to the
comprehensive information on designing microstrip circuits there is an
entirely new chapter on coplanar waveguide (CPW) design and substantial
new material on designing gigahertz-rate digital interconnects both on and
off chip.
Strongly design-oriented, this third edition provides the reader with a
fundamental understanding of this fast expanding field making it a definitive
source for professional engineers and researchers and an indispensable
reference for senior students in electronic engineering.
* Presents a unified treatment of high speed digital interconnect and microwave transmission line design
* Provides up-to-date interconnect design information for gigshertz digital ICs, RFICs, MICs and MMICs
* Features design information on dielectric resonators for filters and oscillators
* Explains design formulas and procedures for numerous types of circuits
* Discusses techniques suitable for rapid CAE implementation
* Includes exhaustive appendices covering key concepts, transmission line thory, Q-factor analysis, scattering parameter theory, and interconnect modelling in circuit simulators


CONTENTS
2.3.1 Delay modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 RC modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Modelling inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 When are inductance effects important? . . . . . . . . . . . . . 43
2.4.2 Inductance extraction . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Design approaches to handling interconnect effects . . . . . . . . . . . 46
2.5.1 Performance-driven routing . . . . . . . . . . . . . . . . . . . . 46
2.5.2 Transmission line return paths . . . . . . . . . . . . . . . . . . 46
3 Interconnect Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Microwave frequencies and applications . . . . . . . . . . . . . . . . . 49
3.3 Transmission line structures . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.1 Imageline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Microstrip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Finline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Inverted microstrip . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.5 Slotline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.6 Trapped inverted microstrip . . . . . . . . . . . . . . . . . . . 56
3.3.7 Coplanar waveguide (CPW) . . . . . . . . . . . . . . . . . . . 56
3.3.8 Coplanar strip (CPS) and differential line . . . . . . . . . . . . 57
3.3.9 Stripline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.10 Summary of interconnect properties . . . . . . . . . . . . . . . 58
3.4 Substrates for hybrid microcircuits . . . . . . . . . . . . . . . . . . . . 59
3.4.1 FR4 (‘printed circuit board’) . . . . . . . . . . . . . . . . . . . 60
3.4.2 Ceramic substrates . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Softboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Overall appraisal — alternative substrates and structures . . . 63
3.4.5 Sapphire — the ‘benchmark’ substrate material . . . . . . . . 63
3.5 Thin-film modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 Plate-through technique . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Etch-back technique . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Equipment required . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.4 Thin resistive films . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Thick-film modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 Pastes, printing and processing for thick-film modules . . . . . 66
3.7 Monolithic technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7.2 Multilayer interconnect . . . . . . . . . . . . . . . . . . . . . . 69
3.7.3 Metallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7.4 Low-k dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.5 MIC and MMIC approaches compared . . . . . . . . . . . . . . 71
3.8 Printed circuit boards . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8.1 Organic PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.8.2 Ceramic PCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.9 Multichip modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.9.1 MCM-L substrates . . . . . . . . . . . . . . . . . . . . . . . . . 75
CONTENTS ix
3.9.2 MCM-C substrates . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.9.3 MCM-D substrates . . . . . . . . . . . . . . . . . . . . . . . . 76
3.9.4 Characterization of interconnects on an MCM: a case study . . 77
3.9.5 MCM Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4 Microstrip Design at Low Frequencies . . . . . . . . . . . . . . . . . . 83
4.1 The microstrip design problem . . . . . . . . . . . . . . . . . . . . . . 83
4.1.1 Digital interconnect . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.2 A transistor amplifier input network . . . . . . . . . . . . . . . 84
4.1.3 The geometry of microstrip . . . . . . . . . . . . . . . . . . . . 85
4.2 The quasi-TEM mode of propagation . . . . . . . . . . . . . . . . . . 86
4.3 Static-TEM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 The characteristic impedance Z0 . . . . . . . . . . . . . . . . . 87
4.3.2 The effective microstrip permittivity εeff . . . . . . . . . . . . . 88
4.3.3 Synthesis: the width-to-height ratio w/h . . . . . . . . . . . . 89
4.3.4 Wavelength λ, and physical length l . . . . . . . . . . . . . . . 90
4.4 Approximate graphically-based synthesis . . . . . . . . . . . . . . . . 90
4.5 Formulas for accurate static-TEM design calculations . . . . . . . . . 92
4.5.1 Synthesis formulas (Z0 and f given) . . . . . . . . . . . . . . . 93
4.5.2 Analysis formulas (w/h and εr given) . . . . . . . . . . . . . . 94
4.5.3 Overall accuracies to be expected from the previous expressions 94
4.6 Analysis techniques requiring substantial computer power . . . . . . . 94
4.7 A worked example of static-TEM synthesis . . . . . . . . . . . . . . . 95
4.7.1 Graphical determination . . . . . . . . . . . . . . . . . . . . . 96
4.7.2 Accurately calculated results . . . . . . . . . . . . . . . . . . . 96
4.7.3 Final dimensions of the microstrip element . . . . . . . . . . . 97
4.8 Microstrip on a dielectrically anisotropic substrate . . . . . . . . . . . 97
4.9 Microstrip on a ferrite substrate . . . . . . . . . . . . . . . . . . . . . 103
4.10 Effects of strip thickness, enclosure and manufacturing tolerances . . . 105
4.10.1 Effects of finite strip thickness . . . . . . . . . . . . . . . . . . 105
4.10.2 Effects of a metallic enclosure . . . . . . . . . . . . . . . . . . 107
4.10.3 Effects due to manufacturing tolerances . . . . . . . . . . . . . 108
4.11 Pulse propagation along microstrip lines . . . . . . . . . . . . . . . . . 109
4.12 Recommendations relating to the static-TEM approaches . . . . . . . 110
4.12.1 The principal static-TEM synthesis formulas . . . . . . . . . . 111
4.12.2 Microstrip on a sapphire (anisotropic) substrate . . . . . . . . 111
4.12.3 Design corrections for non-semiconductor substrates . . . . . . 112
5 Microstrip and Stripline at High Frequencies . . . . . . . . . . . . . 113
5.1 The scope of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Dispersion in microstrip . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Approximate calculations accounting for dispersion . . . . . . . . . . . 118
5.4 Accurate design formulas . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4.1 Edwards and Owens’ expressions . . . . . . . . . . . . . . . . . 122
5.4.2 Expressions suitable for millimetre-wave design . . . . . . . . . 124
5.4.3 Dispersion curves derived from simulations . . . . . . . . . . . 128
5.5 Effects due to ferrite and to dielectrically anisotropic substrates . . . 130
x CONTENTS
5.5.1 Effects of ferrite substrates . . . . . . . . . . . . . . . . . . . . 130
5.5.2 Effects of a dielectrically anisotropic substrate . . . . . . . . . 130
5.6 Designs requiring dispersion calculations — worked examples . . . . . 131
5.7 Field solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.7.1 One example of a ‘classic’ frequency-dependent computer-based
field solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.7.2 Analysis of arbitrary planar configurations . . . . . . . . . . . 134
5.7.3 Asymmetry effects . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7.4 Time-domain approaches . . . . . . . . . . . . . . . . . . . . . 136
5.8 Frequency-dependence of the microstrip characteristic impedance . . . 137
5.8.1 Different definitions and trends with increasing frequency . . . 137
5.8.2 Use of the planar waveguide model . . . . . . . . . . . . . . . . 139
5.8.3 A further alternative expression . . . . . . . . . . . . . . . . . 140
5.8.4 A design algorithm for microstrip width . . . . . . . . . . . . . 141
5.8.5 An example derived from a simulation . . . . . . . . . . . . . . 142
5.9 Operating frequency limitations . . . . . . . . . . . . . . . . . . . . . 142
5.9.1 The TM mode limitation . . . . . . . . . . . . . . . . . . . . . 142
5.9.2 The lowest-order transverse microstrip resonance . . . . . . . . 145
5.10 Power losses and parasitic coupling . . . . . . . . . . . . . . . . . . . . 147
5.10.1 Q-factor and attenuation coefficient . . . . . . . . . . . . . . . 147
5.10.2 Conductor losses . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.10.3 Dielectric loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.10.4 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.10.5 Surface-wave propagation . . . . . . . . . . . . . . . . . . . . . 151
5.10.6 Parasitic coupling . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.10.7 Radiation and surface-wave losses from discontinuities . . . . . 152
5.10.8 Losses in microstrip on semi-insulating GaAs . . . . . . . . . . 152
5.11 Superconducting microstrips . . . . . . . . . . . . . . . . . . . . . . . 153
5.12 Stripline design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.12.1 Symmetrical stripline formulas . . . . . . . . . . . . . . . . . . 156
5.13 Design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.13.1 Recommendation 1 . . . . . . . . . . . . . . . . . . . . . . . . 158
5.13.2 Recommendation 2 . . . . . . . . . . . . . . . . . . . . . . . . 158
5.13.3 Recommendation 3 . . . . . . . . . . . . . . . . . . . . . . . . 158
5.13.4 Recommendation 4 . . . . . . . . . . . . . . . . . . . . . . . . 158
5.13.5 Recommendation 5 . . . . . . . . . . . . . . . . . . . . . . . . 158
5.13.6 Characteristic impedance as a function of frequency . . . . . . 159
5.13.7 Computer-aided design . . . . . . . . . . . . . . . . . . . . . . 159
6 CPW Design Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 161
6.1 Introduction — properties of coplanar waveguide . . . . . . . . . . . . 161
6.2 Modelling CPWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.1 Effective permittivity . . . . . . . . . . . . . . . . . . . . . . . 167
6.2.2 Characteristic impedance . . . . . . . . . . . . . . . . . . . . . 168
6.3 Formulas for accurate calculations . . . . . . . . . . . . . . . . . . . . 169
6.3.1 Analysis and synthesis approaches . . . . . . . . . . . . . . . . 169
6.4 Loss mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
CONTENTS xi
6.4.1 Dielectric loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4.2 Conductor loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4.3 Radiation loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.4.4 CPW with intervening SiO2 layer . . . . . . . . . . . . . . . . 174
6.5 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.5.1 Fundamental and theoretical considerations . . . . . . . . . . . 174
6.5.2 Results from test runs using electromagnetic simulation . . . . 178
6.5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 183
6.6 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.6.1 Step changes in width and separation . . . . . . . . . . . . . . 186
6.6.2 Open-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.6.3 Symmetric series gap . . . . . . . . . . . . . . . . . . . . . . . 190
6.6.4 Coplanar short-circuit . . . . . . . . . . . . . . . . . . . . . . . 192
6.6.5 Right-angle bends . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.6.6 T-junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.6.7 Air bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.6.8 Cross-over junctions . . . . . . . . . . . . . . . . . . . . . . . . 198
6.7 Circuit elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.7.1 Interdigital capacitors and stubs . . . . . . . . . . . . . . . . . 198
6.7.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.7.3 Couplers and baluns . . . . . . . . . . . . . . . . . . . . . . . . 203
6.7.4 Power dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.8 Variants upon the basic CPW structure . . . . . . . . . . . . . . . . . 206
6.8.1 CPW with top and bottom metal shields . . . . . . . . . . . . 206
6.8.2 Multilayer CPW . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.8.3 Trenched CPW on a silicon MMIC . . . . . . . . . . . . . . . . 208
6.8.4 Transitions between CPW and other media . . . . . . . . . . . 209
6.9 Flip-chip realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.10 Mixers, micromachined structures and other CPW issues . . . . . . . 214
6.10.1 Mixers and frequency doubler . . . . . . . . . . . . . . . . . . 214
6.10.2 GaAs FET characterization and specialized resonators . . . . . 215
6.10.3 Micromachined structures . . . . . . . . . . . . . . . . . . . . . 216
6.10.4 Leakage suppression and 50 GHz interconnect . . . . . . . . . 216
6.10.5 Light dependence of silicon FGCPW . . . . . . . . . . . . . . . 217
6.11 Differential line and coplanar strip (CPS) . . . . . . . . . . . . . . . . 218
6.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7 Discontinuities in Microstrip and Stripline . . . . . . . . . . . . . . . 225
7.1 The main discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.2 The foreshortened open-circuit . . . . . . . . . . . . . . . . . . . . . . 227
7.2.1 Equivalent end-effect length . . . . . . . . . . . . . . . . . . . . 228
7.2.2 Upper limit to end-effect length (quasi-static basis) . . . . . . 230
7.3 The series gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.3.1 Accuracy of gap capacitance calculations . . . . . . . . . . . . 233
7.4 Microstrip short-circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.5 Further discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.6 The right-angled bend or ‘corner’ . . . . . . . . . . . . . . . . . . . . . 235
xii CONTENTS
7.7 Mitred or ‘matched’ microstrip bends — compensation techniques . . 237
7.8 Step changes in width (impedance steps) . . . . . . . . . . . . . . . . 240
7.8.1 The symmetrical microstrip step . . . . . . . . . . . . . . . . . 240
7.8.2 The asymmetrical step in microstrip . . . . . . . . . . . . . . . 242
7.9 The narrow transverse slit . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.10 The microstrip T-junction . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.11 Compensated T-junctions . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.12 Cross-junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.13 Frequency dependence of discontinuity effects . . . . . . . . . . . . . . 250
7.13.1 Open-circuits and series gaps . . . . . . . . . . . . . . . . . . . 250
7.13.2 Other discontinuities . . . . . . . . . . . . . . . . . . . . . . . . 256
7.13.3 Cross- and T-junctions . . . . . . . . . . . . . . . . . . . . . . 257
7.13.4 Radial bends . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.13.5 Frequency dependence of shunt post parameters . . . . . . . . 261
7.14 Recommendations for the calculation of discontinuities . . . . . . . . . 263
7.14.1 Foreshortened open-circuits . . . . . . . . . . . . . . . . . . . . 263
7.14.2 Series gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.14.3 Short-circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.14.4 Right-angled bends: mitring . . . . . . . . . . . . . . . . . . . 264
7.14.5 Steps in width . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.14.6 Transverse slit . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.14.7 The T-junction . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
7.14.8 The asymmetric cross-junction . . . . . . . . . . . . . . . . . . 267
7.15 Stripline discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.15.1 Bends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.15.2 Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.15.3 Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8 Parallel-coupled Lines and Directional Couplers . . . . . . . . . . . 269
8.1 Structure and applications . . . . . . . . . . . . . . . . . . . . . . . . 269
8.2 Parameters and initial specification . . . . . . . . . . . . . . . . . . . 270
8.3 Coupled microstrip lines . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.4 Characteristic impedances in terms of the coupling factor (C) . . . . . 273
8.5 Semi-empirical analysis formulas as a design aid . . . . . . . . . . . . 274
8.6 An approximate synthesis technique . . . . . . . . . . . . . . . . . . . 276
8.7 A specific example: design of a 10 DB microstrip coupler . . . . . . . 279
8.7.1 Use of Bryant and Weiss’ curves . . . . . . . . . . . . . . . . . 279
8.7.2 Synthesis using Akhtarzad’s technique . . . . . . . . . . . . . . 280
8.7.3 Comparison of methods . . . . . . . . . . . . . . . . . . . . . . 280
8.8 Coupled-region length . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.9 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.9.1 Overall effects and Getsinger’s model . . . . . . . . . . . . . . 283
8.9.2 More accurate design expressions, including dispersion . . . . . 285
8.9.3 Complete coupling section response . . . . . . . . . . . . . . . 289
8.10 Coupler directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.11 Special coupler designs with improved performance . . . . . . . . . . . 291
8.11.1 The ‘Lange’ coupler . . . . . . . . . . . . . . . . . . . . . . . . 291
CONTENTS xiii
8.11.2 The ‘unfolded Lange’ coupler . . . . . . . . . . . . . . . . . . . 295
8.11.3 Shielded parallel-coupled microstrips . . . . . . . . . . . . . . . 295
8.11.4 The use of a dielectric overlay . . . . . . . . . . . . . . . . . . 296
8.11.5 The incorporation of lumped capacitors . . . . . . . . . . . . . 297
8.11.6 The effect of a dielectrically anisotropic substrate . . . . . . . 299
8.11.7 Microstrip multiplexers . . . . . . . . . . . . . . . . . . . . . . 300
8.11.8 Multisection couplers . . . . . . . . . . . . . . . . . . . . . . . 301
8.11.9 Re-entrant mode couplers . . . . . . . . . . . . . . . . . . . . . 302
8.11.10 Patch couplers . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
8.12 Thickness effects, power losses and fabrication tolerances . . . . . . . 304
8.12.1 Thickness effects . . . . . . . . . . . . . . . . . . . . . . . . . . 304
8.12.2 Power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
8.12.3 Effects of fabrication tolerances . . . . . . . . . . . . . . . . . . 305
8.13 Planar combline directional couplers . . . . . . . . . . . . . . . . . . . 306
8.14 Crosstalk and signal distortion between microstrip lines used in digital
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
8.15 Choice of structure and design recommendations . . . . . . . . . . . . 310
8.15.1 Design procedure for coupled microstrips, C ≤ −3 dB . . . . . 310
8.15.2 Relatively large coupling factors (typically C ≥ −3dB) . . . . 311
8.15.3 Length of the coupled region . . . . . . . . . . . . . . . . . . . 312
8.15.4 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . 313
8.15.5 Coupled structures with improved performance . . . . . . . . . 313
8.15.6 Effects of conductor thickness, power losses and production
tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
8.15.7 Crosstalk between microstrip lines used in digital systems . . . 314
8.15.8 Post-manufacture circuit adjustment . . . . . . . . . . . . . . . 314
9 Power Capabilities, Transitions and Measurement Techniques . . 315
9.1 Power-handling capabilities . . . . . . . . . . . . . . . . . . . . . . . . 315
9.1.1 Maximum average power Pma under CW conditions . . . . . . 315
9.1.2 Peak (pulse) power-handling capability . . . . . . . . . . . . . 316
9.2 Coaxial-to-microstrip transitions . . . . . . . . . . . . . . . . . . . . . 317
9.3 Waveguide-to-microstrip transitions . . . . . . . . . . . . . . . . . . . 319
9.3.1 Ridgeline transformer insert . . . . . . . . . . . . . . . . . . . 319
9.3.2 Mode changer and balun . . . . . . . . . . . . . . . . . . . . . 320
9.3.3 A waveguide-to-microstrip power splitter . . . . . . . . . . . . 323
9.3.4 Slot-coupled antenna waveguide-to-microstrip transition . . . . 324
9.4 Transitions between other media and microstrip . . . . . . . . . . . . 324
9.5 Instrumentation systems for microstrip measurements . . . . . . . . . 325
9.6 Measurement of substrate properties . . . . . . . . . . . . . . . . . . . 328
9.7 Microstrip resonator methods . . . . . . . . . . . . . . . . . . . . . . . 328
9.7.1 The ring resonator . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.7.2 The side-coupled, open-circuit-terminated, straight resonator . 331
9.7.3 Series-gap coupling of microstrips . . . . . . . . . . . . . . . . 332
9.7.4 Series-gap-coupled straight resonator pairs . . . . . . . . . . . 334
9.7.5 The resonant technique due to Richings and Easter . . . . . . 336
9.7.6 The symmetrical straight resonator . . . . . . . . . . . . . . . 337
xiv CONTENTS
9.7.7 Resonance methods for the determination of discontinuities
other than open-circuits . . . . . . . . . . . . . . . . . . . . . . 339
9.8 Q-factor measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 340
9.9 Measurements on parallel-coupled microstrips . . . . . . . . . . . . . . 341
9.10 Standing-wave indicators in microstrip . . . . . . . . . . . . . . . . . . 343
9.11 Time-Domain Reflectometry (TDR) Techniques . . . . . . . . . . . . 344
10 Interconnects and Filters in Passive RFICs and MICs . . . . . . . 347
10.1 Radio-Frequency Integrated Circuits (RFICs) . . . . . . . . . . . . . . 347
10.1.1 On-chip resistors . . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.1.2 On-chip capacitors . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.1.3 Planar inductors . . . . . . . . . . . . . . . . . . . . . . . . . . 350
10.2 Terminations and attenuators in MIC technology . . . . . . . . . . . . 353
10.3 Further thick and thin film passive components . . . . . . . . . . . . . 354
10.3.1 Branch-type couplers and power dividers . . . . . . . . . . . . 355
10.3.2 Microstrip baluns . . . . . . . . . . . . . . . . . . . . . . . . . 360
10.3.3 A strategy for low-pass microwave filter design . . . . . . . . . 361
10.3.4 Bandpass filters . . . . . . . . . . . . . . . . . . . . . . . . . . 365
10.3.5 A worked numerical example of a parallel-coupled bandpass filter370
10.3.6 CAD of parallel-coupled bandpass filters . . . . . . . . . . . . 373
10.3.7 Improvements to the basic edge-coupled filter response . . . . 376
10.3.8 Filter analysis and design including all losses . . . . . . . . . . 376
10.3.9 Bandpass filters with increased bandwidth (>15%) . . . . . . . 379
10.3.10 Further developments in bandpass filter design . . . . . . . . . 380
10.3.11 Microstrip radial stubs . . . . . . . . . . . . . . . . . . . . . . 380
10.3.12 Dielectric resonators and filters using them . . . . . . . . . . . 382
10.3.13 Spurline bandstop filters . . . . . . . . . . . . . . . . . . . . . 383
10.3.14 Filters using synthetic periodic substrates (electromagnetic
bandgap crystals) . . . . . . . . . . . . . . . . . . . . . . . . . 384
10.3.15 Passive MICs with switching elements . . . . . . . . . . . . . . 385
10.3.16 Isolators and circulators . . . . . . . . . . . . . . . . . . . . . . 385
11 Active Digital and Analogue ICs . . . . . . . . . . . . . . . . . . . . . 389
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.1.1 High-speed digital circuits . . . . . . . . . . . . . . . . . . . . . 389
11.2 Clock distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.3 Rotary clockTM distribution . . . . . . . . . . . . . . . . . . . . . . . 393
11.3.1 Conceptual basis . . . . . . . . . . . . . . . . . . . . . . . . . . 394
11.3.2 Circuit model of a rotary clockTM . . . . . . . . . . . . . . . . 395
11.3.3 Case study: a 3 GHz rotary clockTM . . . . . . . . . . . . . . . 398
11.3.4 Effect of copper interconnect . . . . . . . . . . . . . . . . . . . 402
11.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
11.4 RF and microwave active devices . . . . . . . . . . . . . . . . . . . . . 408
11.5 Yield and hybrid MICs . . . . . . . . . . . . . . . . . . . . . . . . . . 409
11.6 Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
11.6.1 Low-noise amplifier design strategy . . . . . . . . . . . . . . . 412
11.6.2 High-gain narrowband amplifier design . . . . . . . . . . . . . 414
CONTENTS xv
11.6.3 Design example . . . . . . . . . . . . . . . . . . . . . . . . . . 415
11.7 Custom hybrid amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 417
11.7.1 Standard MIC amplifier modules . . . . . . . . . . . . . . . . . 417
11.7.2 Custom MIC amplifier modules . . . . . . . . . . . . . . . . . 418
11.8 Balanced amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
11.9 Amplifiers using MMIC technology . . . . . . . . . . . . . . . . . . . . 424
11.9.1 Design of a decade-bandwidth distributed amplifier . . . . . . 424
11.9.2 W-band MMIC LNAs . . . . . . . . . . . . . . . . . . . . . . . 426
11.10 Microwave oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
11.10.1 Example of a Dielectric Resonator Oscillator . . . . . . . . . . 429
11.10.2 DRO oscillator developments . . . . . . . . . . . . . . . . . . . 430
11.10.3 MMIC oscillator example . . . . . . . . . . . . . . . . . . . . . 431
11.11 Active microwave filters . . . . . . . . . . . . . . . . . . . . . . . . . . 433
11.12 Phase shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Appendix A TRANSMISSION LINE THEORY . . . . . . . . . . . . . 435
A.1 Half-, quarter- and eighth-wavelength lines . . . . . . . . . . . . . . . 435
A.2 Simple (narrowband) matching . . . . . . . . . . . . . . . . . . . . . . 436
A.3 Equivalent two-port networks . . . . . . . . . . . . . . . . . . . . . . . 438
A.4 Chain (ABCD) parameters for a uniform length of loss-free
transmission line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
A.5 Parallel coupled transmission lines . . . . . . . . . . . . . . . . . . . . 440
A.5.1 Even and odd modes . . . . . . . . . . . . . . . . . . . . . . . 440
A.5.2 Overall parameters for couplers . . . . . . . . . . . . . . . . . . 441
A.5.3 Analysis of parallel-coupled TEM-mode transmission lines . . 442
Appendix B Q-Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
B.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
B.2 Loaded Q-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
B.3 External Q-factor of an open-circuited microstrip resonator . . . . . . 451
Appendix C Outline of Scattering Parameter Theory . . . . . . . . . . 457
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
C.2 Network parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
C.3 Scattering parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
C.3.1 Scattering parameters for a two-port network . . . . . . . . . . 460
C.3.2 Definitions of two-port S-parameters . . . . . . . . . . . . . . . 462
C.3.3 Evaluation of scattering parameters . . . . . . . . . . . . . . . 463
C.3.4 Measurement of scattering parameters . . . . . . . . . . . . . . 464
C.3.5 S-parameter relationships in interpreting interconnect measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
C.3.6 Multiport S-parameters . . . . . . . . . . . . . . . . . . . . . . 466
C.3.7 Signal-flow graph techniques and S-parameters . . . . . . . . . 468
C.4 Scattering transfer (or T) parameters . . . . . . . . . . . . . . . . . . 469
C.4.1 Cascaded two-port networks: the utility of T parameters . . . 470
Appendix D Capacitance Matrix Extraction . . . . . . . . . . . . . . . . 471
xvi CONTENTS
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
foundations_contents.pdf (109.99 KB, 下载次数: 59 )




第三章 互连线技术.zip (157.76 KB, 下载次数: 83 )

第二章 数字系统的片上连线.zip (969.61 KB, 下载次数: 87 )

第一章:互连线上的信号传输基本理论.zip (1.04 MB, 下载次数: 78 )

Foundations of Interconnect and Microstrip Design.haozip04.zip (3.61 MB, 下载次数: 181 )

Foundations of Interconnect and Microstrip Design.haozip03.zip (8 MB, 下载次数: 188 )

Foundations of Interconnect and Microstrip Design.haozip02.zip (8 MB, 下载次数: 164 )

Foundations of Interconnect and Microstrip Design.haozip01.zip (8 MB, 下载次数: 195 )







发表于 2019-7-8 18:13:11 | 显示全部楼层
3rd edition, 2000
a bit dated
 楼主| 发表于 2019-7-8 19:41:06 | 显示全部楼层


lhyi 发表于 2019-7-8 18:13
3rd edition, 2000
a bit dated


Yes she is old, But theory is not out of date.
发表于 2019-7-8 21:01:04 | 显示全部楼层
kankan
发表于 2019-7-9 20:28:24 | 显示全部楼层
发表于 2019-7-12 10:08:15 | 显示全部楼层
非常感謝~~~~~
发表于 2020-5-19 17:23:49 | 显示全部楼层
谢谢
发表于 2020-7-14 09:07:08 | 显示全部楼层
谢谢,第三版
发表于 2020-7-14 09:20:26 | 显示全部楼层
感谢
发表于 2020-7-24 17:09:43 | 显示全部楼层
谢谢
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条


小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-11-22 01:55 , Processed in 0.026753 second(s), 8 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表