|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
Practical Microwave Circuits.pdf
(8.95 MB, 下载次数: 243 )
Stephen A. Maas
Contents
Preface xvii
Chapter 1 Transmission Lines 1
1.1 Transmission Lines 1
1.1.1 Fundamental Relations 1
1.1.2 Characteristic Impedance 4
1.1.3 Lossy Transmission Lines 5
1.1.4 Conditions at the Ends of Transmission Lines 6
1.1.4.1 Reflection Coefficient 6
1.1.4.2 Return Loss and VSWR 8
1.1.4.3 Transmission Coefficient 9
1.1.4.4 Equivalent Circuits 10
1.1.5 Matrix Relationships 11
1.1.6 Input Impedance and Power Transfer 13
1.2 Practical Considerations 14
1.2.1 Transmission Line Types 15
1.2.1.1 Parallel-Wire Line 15
1.2.1.2 Coaxial Line 15
1.2.1.3 Planar Transmission Structures 16
1.2.2 Properties 17 Practical Microwave Circuits viii
1.2.2.1 TEM Modes, Group Velocity,
and the Quasi-TEM
Approximation 17
1.2.2.2 Quasistatic Analysis 20
1.2.2.3 Loss 20
1.2.2.4 Nonhomogeneous Lines 22
1.3 Application: RC Transmission Line 23
1.4 Application: Multisection Quarter-Wave
Transformer 24
Chapter 2 Coupled Transmission Lines and Modal Analysis 31
2.1 Even- and Odd-Mode Analysis 31
2.1.1 Even and Odd Modes 31
2.1.2 Even- and Odd-Mode Characteristics 33
2.1.3 Coupled-Line Analysis 35
2.1.4 Application: Coupled-Line Directional
Coupler 36
2.1.5 Effect of Unequal Modal Phase Velocities 40
2.2 General, Multiple Coupled Lines 41
2.2.1 R, L, G, and C Matrices 41
2.2.2 Transmission Line Equations 43
2.2.3 Matrices 46
2.2.4 Application: Lange Coupler 49
2.3 Balun Design 51
2.3.1 Balun Properties 52
2.3.2 Application: Parallel-Strip Balun 54
2.3.3 Application: Marchand Balun 57
2.3.4 Application: Half-Wave Balun 62
Chapter 3 Scattering Parameters 67
3.1 Circuit Description in Terms of Wave Quantities 68
3.1.1 Voltage Waves and Power Waves 68
3.1.2 The Scattering Matrix 70
3.1.3 S-Parameter Renormalization 73Contents ix
3.1.4 Circuit Interconnections 73
3.2 Properties of the Scattering Matrix 77
3.2.1 General Properties 77
3.2.2 Two-Ports 79
3.2.3 Three-Ports 80
3.2.4 Application: Baluns 83
3.2.5 Four-Ports 84
3.3 S Parameter Analysis of Two-Ports 88
3.3.1 Gain and Reflection Coefficients 88
3.3.1.1 Gain 89
3.3.1.2 Input and Output Reflection
Coefficients 92
3.3.1.3 Determining S Parameters from
Nodal Analysis 93
3.3.2 Two-Port Gain Definitions 95
3.4 Stability 96
3.4.1 Two-Port Stability 96
3.4.2 Port Terminations and External Stability 97
3.4.3 General Linear Circuit Stability 101
3.4.3.1 A More General View of
External Stability 101
3.4.3.2 Internal Stability 103
3.4.3.3 Interface Stability 105
3.5 Transfer Scattering Matrix 108
Chapter 4 Matching Circuits 113
4.1 Fundamentals 114
4.1.1 Power Transfer and Port Impedances 114
4.1.2 Impedance Normalization 115
4.2 Narrowband Matching 115
4.2.1 L-Section Matching Circuits Using LC
Elements or Stubs 116 Practical Microwave Circuits x
4.2.2 Realization of L and C Elements with
Transmission Lines 118
4.2.3 Series-Line Matching 119
4.2.4 Quarter-Wave Transformer Matching 119
4.2.5 Simple Broadbanding Technique 121
4.3 Transmission-Line Transformers 122
4.3.1 Wirewound Impedance Transformer 122
4.3.2 Toroidal Balun 123
4.3.3 Transmission Line “Autotransformer” 126
4.4 Classical Synthesis 131
4.4.1 Matching Limitations 131
4.4.2 Prototype Networks 132
4.4.2.1 Series RL or Shunt RC 132
4.4.2.2 Shunt RL or Series RC Loads 134
4.4.3 Normalization and Frequency Scaling 134
4.4.4 Load Scaling and the Decrement 135
4.4.5 Examples 139
4.4.5.1 Low-Pass Matching Circuit 139
4.4.5.2 Bandpass Matching Circuit 142
4.4.6 Impedance Transformations 144
4.5 Distributed Networks 147
4.5.1 Simple Resonator Equivalents Based on
Slope Parameters 148
4.5.2 Converting Series Elements to Shunt 149
4.5.2.1 Example: Conversion of a Series
Resonator to Shunt 152
4.5.2.2 Impedance and Admittance
Inverters 152
4.5.2.3 Example: Use of Lumped-
Element Inverters 156
4.5.3 Richards’ Transformation 158
4.5.3.1 Example: Low-Pass Matching
Circuit 159Contents xi
4.6 Modern Methods 159
4.6.1 Direct Optimization 160
4.6.2 Real Frequency Method 162
4.6.3 Synthesis and Parasitic Absorption 164
Chapter 5 Circuit Analysis 167
5.1 Network Graph Analysis 167
5.1.1 General Network Graphs 168
5.1.2 Example: A Terminated Two-Port 173
5.1.3 S Parameters and Mason’s Rule 176
5.1.4 S-Parameter Examples 178
5.1.4.1 Input Reflection Coefficient 178
5.1.4.2 Transducer Gain 181
5.1.4.3 Interface Mismatch in
Cascaded Two-Ports 182
5.2 Nodal Analysis 185
5.2.1 Indefinite Admittance Matrix 185
5.2.1.1 Matrix Stamps 186
5.2.1.2 Voltage-Controlled Current
Source 187
5.2.1.3 Grounded Elements 188
5.2.2 Matrix Reduction 190
Chapter 6 Circuit and Element Modeling 195
6.1 Circuit Characterization 195
6.1.1 Wave and I/V Characterization 196
6.1.2 Characterization of Discrete Components 196
6.1.2.1 Measurement and Application 196
6.1.2.2 Lumped-Element Model 199
6.1.3 EM-Simulated Circuit Elements 201
6.1.3.1 EM Simulators 201
6.1.3.2 De-Embedding 202
6.1.3.3 EM Database Elements 204 Practical Microwave Circuits xii
6.1.3.4 Use of EM Results in Nonlinear
Analysis 205
6.1.4 Correction of Reference-Plane Locations 207
6.1.5 De-Embedding by Negative Images 209
6.2 Some Useful Nonexistent Components 211
6.2.1 Transformer 211
6.2.2 Gyrator 215
6.2.2.1 Transformers Modeled by
Gyrators 216
6.2.2.2 Circulator Model 219
6.2.2.3 Current Sensor 219
6.2.2.4 Controlled Sources 220
6.3 Some Problematical Circuit Elements 220
6.3.1 Bond Wires 222
6.3.2 Bond Wires to Chips 224
6.3.3 Cell Interconnections in Large Devices 224
6.3.4 Housing Effects 226
6.3.5 Transmission-Line Loss 227
6.3.6 Thick Metal in EM Simulations 228
6.3.7 Poorly Modeled Circuit Elements 228
Chapter 7 Active Two-Ports 231
7.1 Amplifier Theory 231
7.1.1 Summary of Previous Results 231
7.1.1.1 Gain 231
7.1.1.2 Input and Output Reflection
Coefficients 233
7.1.1.3 External Stability 233
7.1.2 Gain Circles 235
7.1.3 Simultaneous Conjugate Match 236
7.1.4 Figures of Merit for Solid-State Devices 238
7.1.4.1 Maximum Available Gain and
Maximum Stable Gain 238
7.1.4.2 fmax and ft
238Contents xiii
7.1.5 Power Considerations 241
7.1.6 Distortion 244
7.2 Noise 247
7.2.1 Noise Temperature and Noise Figure 247
7.2.1.1 Noise Temperature 248
7.2.1.2 Noise Figure 250
7.2.2 Noise Figure Optimization 250
7.2.3 Noise Figure of an Attenuator 252
7.2.4 Cascaded Stages 253
7.3 Amplifier Design 254
7.3.1 Device Bias in Amplifier Design 254
7.3.1.1 Bipolar Devices 254
7.3.1.2 FETs 255
7.3.2 Narrowband Amplifier Design 256
7.3.2.1 Matching Approach 256
7.3.2.2 Example: Low-Noise Amplifier 257
7.3.3 Broadband Design Using Negative-Image
Models 260
7.3.3.1 Negative-Image Modeling 261
7.3.3.2 Example: LNA Design Using
Negative-Image Modelling 263
7.3.4 Small-Signal Power Amplifier Design 268
7.3.4.1 Power Amplifier Design 268
7.3.4.2 Example: Small-Signal, Class-A
Amplifier 270
7.3.5 Amplifier Design for Dynamic Range 273
7.3.5.1 Dynamic Range in FET
Amplifiers 273
7.3.5.2 Wide Dynamic Range Bipolar
Transistor Amplifiers 275
7.3.5.3 Example: Wide Dynamic Range
FET Amplifier 276 Practical Microwave Circuits xiv
Chapter 8 Balanced and Quadrature-Coupled Circuits 281
8.1 90- and 180-Degree Hybrid Junctions 281
8.1.1 Characteristics of Hybrids 281
8.1.2 Quadrature Hybrids 283
8.1.2.1 Coupled-Line Hybrid 283
8.1.2.2 Branch-Line Hybrid 284
8.1.2.3 Lumped-Element Quadrature
Hybrids 284
8.1.3 180-Degree Hybrids 289
8.1.3.1 Rat-Race Hybrid 289
8.1.3.2 Rat-Race Hybrid with Unequal
Power Division 290
8.1.3.3 Broadband Rat-Race Hybrid 292
8.1.3.4 Marchand Hybrid 293
8.1.3.5 Lumped-Element 180-Degree
Hybrid 293
8.1.4 Practical Considerations 295
8.2 Quadrature-Coupled Circuits 296
8.2.1 The Terminated Quadrature Hybrid 297
8.2.2 Quadrature-Coupled Amplifier 301
8.2.2.1 Gain and Port Reflection
Coefficients 301
8.2.2.2 Large-Signal Performance 304
8.2.2.3 Noise 305
8.3 Balanced Amplifiers Using Baluns and 180-Degree
Hybrids 310
8.3.1 The Terminated Balun 310
8.3.1.1 Input Reflection Coefficient 310
8.3.1.2 Even- and Odd-Mode Port
Reflection Coefficients 313
8.3.2 Balun-Coupled Balanced Circuits 316
8.3.3 Even Harmonics and Even-Order
Distortion 316Contents xv
8.3.4 Hybrid-Coupled Balanced Circuits 318
About the Author 321
Index
Solid-State_Microwa(High_Power Amplifiers)[Franco_Sechi,_Marina_Bujatti].pdf
(5.79 MB, 下载次数: 110 )
Franco Sechi
Marina Bujatti
Contents
Preface xi
CHAPter 1
Introduction 1
1.1 Scope of This Book 1
1.1.1 Future Developments 3
References 3
CHAPter 2
High-Power Amplifiers 5
2.1 Applications and Specifications 5
2.2 Active Devices 11
References 14
CHAPter 3
Physics of Active Devices 17
3.1 Introduction 17
3.2 Basic Concepts of Solid-State Physics 17
3.3 Charge Transport in Semiconductors 25
3.4 Junctions and Barriers 27
3.5 FETs and MESFETs 37
3.6 Heterojunction Transistors 45
References 53
CHAPter 4
Device Characterization and Modeling 57
4.1 Introduction 57
4.2 Small-Signal Characterization and Models 57
4.2.1 MESFET and HEMT Small-Signal Model 58
4.2.2 HBT Small-Signal Model 59
4.3 Large-Signal Characterization 60
4.3.1 Load Pull 60
4.3.2 Large-Signal Parameters: AM/AM and AM/PM 66
4.3.3 S-Parameters Versus Bias 67
4.4 Large-Signal Models 69
4.4.1 MESFET and HEMT Large-Signal Model 69
4.4.2 HBT Large-Signal Model 71
References 74
vii CHAPter 5
Phase Noise 77
5.1 Introduction 77
5.2 Noise in Semiconductors 78
5.3 Noise in Active Devices 81
5.4 Phase Noise 87
5.5 Phase Noise in Amplifiers 89
References 96
CHAPter 6
Technologies for Microwave Power Amplifiers 99
6.1 Introduction 99
6.2 Waveguide Components 99
6.3 Microwave Integrated Circuits (MICs) 100
6.3.1 Microwave Printed Circuits 101
6.3.2 Hybrid Circuits 102
6.3.3 Miniature Hybrid or Semimonolithic Ceramic Circuits 105
6.3.4 Monolithic Circuits 108
References 112
CHAPter 7
Power Combiners and Dividers 115
7.1 Introduction 115
7.2 Balanced Stages and Quadrature Couplers 116
7.2.1 Interdigitated Couplers 117
7.2.2 Branch-Line Couplers 122
7.2.3 Wilkinson Couplers, In-Phase and Quadrature 125
7.2.4 Comparison of Three Types of Microstrip Quadrature Couplers 129
7.3 180° Couplers 130
7.4 Lumped-Element l  /4 Transformers 131
7.5 Radial Combiners 132
7.5.1 Microstrip Lines 132
7.5.2 Radial Waveguides 134
7.5.3 Conical Waveguides 140
7.6 Coupler Arrays 142
References 144
CHAPter 8
General Power-Amplifier Design 149
8.1 Introduction 149
8.2 Load-Pull Design 149
8.3 Broadband Matching Networks 150
8.4 Bode and Fano—Theoretical Limitations on Matching 155
8.5 Bandwidth vs. Power 158
8.6 Load-Line Design 163
viii Contents8.7 Large-Signal Simulation Design: Harmonic Balance 171
8.8 Potential Instabilities 173
8.8.1 Low-Level Oscillations: Rollet’s k Factor 173
8.8.2 Internal Oscillations 175
8.8.3 Parametric Oscillations 176
8.8.4 Bias Oscillations 178
References 179
CHAPter 9
High-Efficiency Amplifiers 181
9.1 Introduction 181
9.2 Class A: Output Power and Efficiency Versus Load Line 181
9.3 Class AB: Peak Voltage Versus Conduction Angle and Load Line 184
9.4 Overdriven Amplifiers 192
9.4.1 Class B: Optimal Efficiency and Class F 192
9.4.2 Class B: Optimal Power 197
9.4.3 Class A: Optimal Loading 200
9.4.4 Class A: Optimal Power and Efficiency 203
9.5 Class E 205
9.6 Real Devices and Circuits 213
References 214
CHAPter 10
Linear Power Amplifiers 217
10.1 Introduction 217
10.2 Linearity 217
10.2.1 Amplitude Distortion: Two-Tone IMD 218
10.2.2 Real IMD Curves 222
10.2.3 Phase Distortion: Two-Tone IMD 226
10.2.4 Composite Amplitude and Phase Distortion 229
10.2.5 Spectrum Asymmetry and Memory Effects 230
10.3 Design Technique: Intermodulation and Power Contours 232
10.4 Test Set 236
10.5 A Simple Quadrature Model 237
10.6 Behavioral Models 240
10.6.1 Power and Taylor Series 241
10.6.2 Volterra Series 242
10.6.3 Other Miscellaneous Models 243
10.7 Linearization Techniques 243
10.7.1 Predistortion 243
10.7.2 Feedforward Technique 250
10.7.3 Envelope Feedback 252
10.8 Channel Interference: ACPR, NPR, M-IMR 253
References 255
Contents ix CHAPter 11
Special Power Amplifiers 259
11.1 Doherty Amplifier 259
11.2 Chireix Amplifier 263
11.3 Kahn EER Amplifier 268
References 270
CHAPter 12
Bias Circuits 273
12.1 Introduction 273
12.2 Passive Circuit 273
12.3 Broadband Voltage Followers 276
12.4 Bias Supply 278
12.4.1 Gain Stabilization Versus Temperature 279
12.5 Distributed Pulsing 282
References 285
CHAPter 13
Thermal Design 287
13.1 Introduction 287
13.2 Device Life Versus Temperature 287
13.3 Junction Temperature Measurements 289
13.3.1 IR Microscopy 289
13.3.2 Liquid Crystals 291
13.3.3 Electrical Parameters 294
13.4 Mode of Operation 295
13.4.1 CW 296
13.4.2 Pulse 298
13.5 Heat Sinks 301
References 303 |
|