CHAPTER ONE
A Measure of Information
1.1 Introduction ...................................................... 1
1.2 Axioms for the Uncertainty Measure ................................. 5
1.3 Three Interpretations of the Uncertainty Function ..................... 12
1.4 Properties of the Uncertainty Function; Joint and Conditional Uncertainty . 16
1.5 The Measure of Information ........................................ 21
1.6 Notes and Remarks ................................................ 24
CHAPTER TWO
Noiseless Coding
2.1 Introduction ...................................................... 27
2.2 The Problem of Unique Decipherability .............................. 28
2.3 Necessary and Sufficient Conditions for the Existence of Instantaneous
Codes ............................................................ 33
M
2.4 Extension of the Condition iD-" 1 to Uniquely Decipherable Codes .. 35
2.5 The Noiseless Coding Theorem ...................................... 36
2.6 Construction of Optimal Codes ...................................... 40
2.7 Notes and Remarks ................................................ 43
CHAPTER THREE
The Discrete Memoryless Channel
3.1 Models for Communication Channels ................................ 46
3.2 The Information Processed by a Channel; ChannelCapacity; Classification
of Channels ....................................................... 49
3.3 Calculation of Channel Capacity ..................................... 53
3.4 Decoding Schemes; the Ideal Observer ............................... 60
3.5 The Fundamental Theorem ......................................... 63
3.6 Exponential Error Bounds .......................................... 77
3.7 The Weak Converse to the Fundamental Theorem ..................... 80
3.8 Notes and Remarks ................................................ 83
CHAPTER FOUR
Error Correcting Codes
4.1 Introduction; Minimum Distance Principle ........................... 87
4.2 Relation between Distance and Error Correcting Properties of Codes; the
Hamming Bound .................................................. 89
4.3 Parity Check Coding ............................................... 91
4.4 The Application of Group Theory to Parity Check Coding .............. 95
4.5 Upper and Lower Bounds on the Error Correcting Ability of Parity Check
Codes ............................................................ 105
4.6 Parity Check Codes Are Adequate .................................... 110
4.7 Precise Error Bounds for General Binary Codes ....................... 113
4.8 The Strong Converse for the Binary Symmetric Channel ................ 124
4.9 Non-Binary Coding ................................................ 126
4.10 Notes and Remarks ................................................ 127
CHAPTER FIVE
Further Theory of Error Correcting Codes
5.1 Feedback Shift Registers and Cyclic Codes ............................ 134
5.2 General Properties of Binary Matrices and Their Cycle Sets .............
5.3 Properties of Cyclic Codes .......................................... 147
5.4 Bose-Chaudhuri-Hocquenghem Codes ................................ 156
5.5 Single Error Correcting Cyclic Codes; Automatic Decoding ............ 161
5.6 Notes and Remaxks ................................................ 163
CHAPTER SIX
Information Sources
6.1 Introduction ...................................................... 169
6.2 A Mathematical Model for an Information Source .................... 169
6.3 Introduction to the Theory of Finite Markov Chains ................... 172
6.4 Information Sources; Uncertainty of a Source ........................ 184
6.5 Order of a Source; Approximation of a General Information Source by a
Source of Finite Order ............................................. 189
6.6 The Asymptotic Equipartition Property ............................... 195
6.7 Notes and Remarks ................................................ 206
CHAPTER SEVEN
Channels with Memory
7.1 Introduction ...................................................... 211
7.2 The Finite-State Channel ........................................... 215
7.3 The Coding Theorem for Finite State Regular Channels ................ 219
7.4 The Capacity of a General Discrete Channel; Comparison of the Weak and
Strong Converses .................................................. 223
7.5 Notes and Remarks ................................................ 227
CHAPTER EIGHT
Continuous Channels
8.1 Introduction ...................................................... 230
8.2 The Time-Discrete Gaussian Channel ................................ 231
8.3 Uncertainty in the Continuous Case .................................. 236
8.4 The Converse to the Coding Theorem for the Time-Discrete Gaussian
Channel .......................................................... 243
8.5 The Time-Continuous Gaussian Channel .............................. 250
8.6 Band-Limited Channels ............................................. 256
8.7 Notes and Remarks ................................................ 260
Appendix
1. Compact and Symmetric Operators onL2[a, b] ......................... 262
2. Integral Operators .................................................. 269
3. The Karhuncn-Lovc Theorem ....................................... 275
4. Further Results Concerning Integral Operators Determined by a Covariance
Function ......................................................... 281
Tables of Values of --log2 p and --p log: p .................................. 291
Solutions to Problems .................................................... 293
References ............................................................. 331
Index Information_theory==By Ash.rar(3.21 MB, 下载次数: 116 )