在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 58379|回复: 512

Wiley 2008新书《Adaptive Filters》Ali H. Sayed

[复制链接]
发表于 2008-6-5 23:40:24 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
Wiley 2008新书《Adaptive Filters》Ali H. Sayed 《Adaptive Filters》Ali H. Sayed 【资料成文时间】: 2008.04 【语言】:en 【页数】: 820 【何人(公司)所著】: Ali H. Sayed 【文件格式】: pdf 【文件原名】: Adaptive Filters 【摘要或目录】: Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. Now, preserving the style and main features of the earlier award-winning publication, Fundamentals of Adaptive Filtering (2005 Terman Award), the author offers readers and instructors a concentrated, systematic, and up-to-date treatment of the subject in this valuable new book. Adaptive Filters allows readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts-each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB(r) solutions available to all readers. Additional features include: * Numerous tables, figures, and projects * Special focus on geometric constructions, physical intuition, linear-algebraic concepts, and vector notation * Background material on random variables, linear algebra, and complex gradients collected in three introductory chapters * Complete solutions manual available for instructors * MATLAB(r) solutions available for all computer projects Preface and Acknowledgments. Notation and Symbols. BACKGROUND MATERIAL. A. Random Variables. A.1 Variance of a Random Variable. A.2 Dependent Random Variables. A.3 Complex-Valued Random Variables. A.4 Vector-Valued Random Variables. A.5 Gaussian Random Vectors. B. Linear Algebra. B.1 Hermitian and Positive-Definite Matrices. B.2 Range Spaces and Nullspaces of Matrices. B.3 Schur Complements. B.4 Cholesky Factorization. B.5 QR Decomposition. B.6 Singular Value Decomposition. B.7 Kronecker Products. C. Complex Gradients. C.1 Cauchy-Riemann Conditions. C.2 Scalar Arguments. C.3 Vector Arguments. PART I: OPTIMAL ESTIMATION. 1. Scalar-Valued Data. 1.1 Estimation Without Observations. 1.2 Estimation Given Dependent Observations. 1.3 Orthogonality Principle. 1.4 Gaussian Random Variables. 2. Vector-Valued Data. 2.1 Optimal Estimator in the Vector Case. 2.2 Spherically Invariant Gaussian Variables. 2.3 Equivalent Optimization Criterion. Summary and Notes. Problems and Computer Projects. PART II: LINEAR ESTIMATION. 3. Normal Equations. 3.1 Mean-Square Error Criterion. 3.2 Minimization by Differentiation. 3.3 Minimization by Completion-of-Squares. 3.4 Minimization of the Error Covariance Matrix. 3.5 Optimal Linear Estimator. 4. Orthogonality Principle. 4.1 Design Examples. 4.2 Orthogonality Condition. 4.3 Existence of Solutions. 4.4 Nonzero-Mean Variables. 5. Linear Models. 5.1 Estimation using Linear Relations. 5.2 Application: Channel Estimation. 5.3 Application: Block Data Estimation. 5.4 Application: Linear Channel Equalization. 5.5 Application: Multiple-Antenna Receivers. 6. Constrained Estimation. 6.1 Minimum-Variance Unbiased Estimation. 6.2 Example: Mean Estimation. 6.3 Application: Channel and Noise Estimation. 6.4 Application: Decision Feedback Equalization. 6.5 Application: Antenna Beamforming. 7. Kalman Filter. 7.1 Innovations Process. 7.2 State-Space Model. 7.3 Recursion for the State Estimator. 7.4 Computing the Gain Matrix. 7.5 Riccati Recursion. 7.6 Covariance Form. 7.7 Measurement and Time-Update Form. Summary and Notes. Problems and Computer Projects. PART III: STOCHASTIC GRADIENT ALGORITHMS. 8. Steepest-Descent Technique. 8.1 Linear Estimation Problem. 8.2 Steepest-Descent Method. 8.3 More General Cost Functions. 9. Transient Behavior. 9.1 Modes of Convergence. 9.2 Optimal Step-Size. 9.3 Weight-Error Vector Convergence. 9.4 Time Constants. 9.5 Learning Curve. 9.6 Contour Curves of the Error Surface. 9.7 Iteration-Dependent Step-Sizes. 9.8 Newton?s Method. 10. LMS Algorithm. 10.1 Motivation. 10.2 Instantaneous Approximation. 10.3 Computational Cost. 10.4 Least-Perturbation Property. 10.5 Application: Adaptive Channel Estimation. 10.6 Application: Adaptive Channel Equalization. 10.7 Application: Decision-Feedback Equalization. 10.8 Ensemble-Average Learning Curves. 11. Normalized LMS Algorithm. 11.1 Instantaneous Approximation. 11.2 Computational Cost. 11.3 Power Normalization. 11.4 Least-Perturbation Property. 12. Other LMS-Type Algorithms. 12.1 Non-Blind Algorithms. 12.2 Blind Algorithms. 12.3 Some Properties. 13. Affine Projection Algorithm. 13.1 Instantaneous Approximation. 13.2 Computational Cost. 13.3 Least-Perturbation Property. 13.4 Affine Projection Interpretation. 14. RLS Algorithm. 14.1 Instantaneous Approximation. 14.2 Computational Cost. Summary and Notes. Problems and Computer Projects. PART IV: MEAN-SQUARE PERFORMANCE. 15. Energy Conservation. 15.1 Performance Measure. 15.2 Stationary Data Model. 15.3 Energy Conservation Relation. 15.4 Variance Relation. 15.A Interpretations of the Energy Relation. 16. Performance of LMS. 16.1 Variance Relation. 16.2 Small Step-Sizes. 16.3 Separation Principle. 16.4 White Gaussian Input. 16.5 Statement of Results. 16.6 Simulation Results. 17. Performance of NLMS. 17.1 Separation Principle. 17.2 Simulation Results. 17.A Relating NLMS to LMS. 18. Performance of Sign-Error LMS. 18.1 Real-Valued Data. 18.2 Complex-Valued Data. 18.3 Simulation Results. 19. Performance of RLS and Other Filters. 19.1 Performance of RLS. 19.2 Performance of Other Filters. 19.3 Performance Table for Small Step-Sizes. 20. Nonstationary Environments. 20.1 Motivation. 20.2 Nonstationary Data Model. 20.3 Energy Conservation Relation. 20.4 Variance Relation. 21. Tracking Performance. 21.1 Performance of LMS. 21.2 Performance of NLMS. 21.3 Performance of Sign-Error LMS. 21.4 Performance of RLS. 21.5 Comparison of Tracking Performance. 21.6 Comparing RLS and LMS. 21.7 Performance of Other Filters. 21.8 Performance Table for Small Step-Sizes. Summary and Notes. Problems and Computer Projects. PART V: TRANSIENT PERFORMANCE. 22. Weighted Energy Conservation. 22.1 Data Model. 22.2 Data-Normalized Adaptive Filters. 22.3 Weighted Energy Conservation Relation. 22.4 Weighted Variance Relation. 23. LMS with Gaussian Regressors. 23.1 Mean and Variance Relations. 23.2 Mean Behavior. 23.3 Mean-Square Behavior. 23.4 Mean-Square Stability. 23.5 Steady-State Performance. 23.6 Small Step-Size Approximations. 23.A Convergence Time. 24. LMS with non-Gaussian Regressors. 24.1 Mean and Variance Relations. 24.2 Mean-Square Stability and Performance. 24.3 Small Step-Size Approximations. 24.A Independence and Averaging Analysis. 25. Data-Normalized Filters. 25.1 NLMS Filter. 25.2 Data-Normalized Filters. 25.A Stability Bound. 25.B Stability of NLMS. Summary and Notes. Problems and Computer Projects. PART VI: BLOCK ADAPTIVE FILTERS. 26. Transform Domain Adaptive Filters. 26.1 Transform-Domain Filters. 26.2 DFT-Domain LMS. 26.3 DCT-Domain LMS. 26.A DCT-Transformed Regressors. 27. Efficient Block Convolution. 27.1 Motivation. 27.2 Block Data Formulation. 27.3 Block Convolution. 28. Block and Subband Adaptive Filters. 28.1 DFT Block Adaptive Filters. 28.2 Subband Adaptive Filters. 28.A Another Constrained DFT Block Filter. 28.B Overlap-Add Block Adaptive Filters. Summary and Notes. Problems and Computer Projects. PART VII: LEAST-SQUARES METHODS. 29. Least-Squares Criterion. 29.1 Least-Squares Problem. 29.2 Geometric Argument. 29.3 Algebraic Arguments. 29.4 Properties of Least-Squares Solution. 29.5 Projection Matrices. 29.6 Weighted Least-Squares. 29.7 Regularized Least-Squares. 29.8 Weighted Regularized Least-Squares. 30. Recursive Least-Squares. 30.1 Motivation. 30.2 RLS Algorithm. 30.3 Regularization. 30.4 Conversion Factor. 30.5 Time-Update of the Minimum Cost. 30.6 Exponentially-Weighted RLS Algorithm. 31. Kalman Filtering and RLS. 31.1 Equivalence in Linear Estimation. 31.2 Kalman Filtering and Recursive Least-Squares. 31.A Extended RLS Algorithms. 32. Order and Time-Update Relations. 32.1 Backward Order-Update Relations. 32.2 Forward Order-Update Relations. 32.3 Time-Update Relation. Summary and Notes. Problems and Computer Projects. PART VIII: ARRAY ALGORITHMS. 33. Norm and Angle Preservation. 33.1 Some Difficulties. 33.2 Square-Root Factors. 33.3 Norm and Angle Preservation. 33.4 Motivation for Array Methods. 34. Unitary Transformations. 34.1 Givens Rotations. 34.2 Householder Transformations. 35. QR and Inverse QR Algorithms. 35.1 Inverse QR Algorithm. 35.2 QR Algorithm. 35.3 Extended QR Algorithm. 35.A Array Algorithms for Kalman Filtering. Summary and Notes. Problems and Computer Projects. PART IX: FAST RLS ALGORITHMS. 36. Hyperbolic Rotations. 36.1 Hyperbolic Givens Rotations. 36.2 Hyperbolic Householder Transformations. 36.3 Hyperbolic Basis Rotations. 37. Fast Array Algorithm. 37.1 Time-Update of the Gain Vector. 37.2 Time-Update of the Conversion Factor. 37.3 Initial Conditions. 37.4 Array Algorithm. 37.A Chandrasekhar Filter. 38. Regularized Prediction Problems. 38.1 Regularized Backward Prediction. 38.2 Regularized Forward Prediction. 38.3 Low-Rank Factorization. 39. Fast Fixed-Order Filters. 39.1 Fast Transversal Filter. 39.2 FAEST Filter. 39.3 Fast Kalman Filter. 39.4 Stability Issues. Summary and Notes. Problems and Computer Projects. PART X: LATTICE FILTERS. 40. Three Basic Estimation Problems. 40.1 Motivation for Lattice Filters. 40.2 Joint Process Estimation. 40.3 Backward Estimation Problem. 40.4 Forward Estimation Problem. 40.5 Time and Order-Update Relations. 41. Lattice Filter Algorithms. 41.1 Significance of Data Structure. 41.2 A Posteriori-Based Lattice Filter. 41.3 A Priori-Based Lattice Filter. 42. Error-Feedback Lattice Filters. 42.1 A Priori Error-Feedback Lattice Filter. 42.2 A Posteriori Error-Feedback Lattice Filter. 42.3 Normalized Lattice Filter. 43. Array Lattice Filters. 43.1 Order-Update of Output Estimation Errors. 43.2 Order-Update of Backward Estimation Errors. 43.3 Order-Update of Forward Estimation Errors. 43.4 Significance of Data Structure. Summary and Notes. Problems and Computer Projects. PART XI: ROBUST FILTERS. 44. Indefinite Least-Squares. 44.1 Indefinite Least-Squares. 44.2 Recursive Minimization Algorithm. 44.3 Time-Update of the Minimum Cost. 44.4 Singular Weighting Matrices. 44.A Stationary Points. 44.B Inertia Conditions. 45. Robust Adaptive Filters. 45.1 A Posteriori-Based Robust Filters. 45.2 ε-NLMS Algorithm. 45.3 A Priori-Based Robust Filters. 45.4 LMS Algorithm. 45.A H1 Filters. 46. Robustness Properties. 46.1 Robustness of LMS. 46.2 Robustness of εNLMS. 46.3 Robustness of RLS. Summary and Notes. Problems and Computer Projects. REFERENCES AND INDICES. References. Author Index. Subject Index.

Adaptive Filters[1].part01.rar

3.34 MB, 下载次数: 1119 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-6-5 23:43:12 | 显示全部楼层

part 2

part 2

[ 本帖最后由 cdcasanova 于 2008-6-5 23:53 编辑 ]

Adaptive Filters[1].part02.rar

3.34 MB, 下载次数: 981 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-6-6 00:03:39 | 显示全部楼层

part 3

part3

Adaptive Filters[1].part03.rar

3.34 MB, 下载次数: 961 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-6-6 00:13:07 | 显示全部楼层

part 4

part4

Adaptive Filters[1].part04.rar

3.34 MB, 下载次数: 991 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-6-6 00:16:37 | 显示全部楼层

part 5

part 5

Adaptive Filters[1].part05.rar

3.34 MB, 下载次数: 968 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-6-6 00:21:37 | 显示全部楼层

part6

part6

Adaptive Filters[1].part06.rar

3.34 MB, 下载次数: 934 , 下载积分: 资产 -2 信元, 下载支出 2 信元

 楼主| 发表于 2008-6-6 00:29:13 | 显示全部楼层

part 7

part 7

Adaptive Filters[1].part07.rar

3.34 MB, 下载次数: 929 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Adaptive Filters[1].part08.rar

3.34 MB, 下载次数: 917 , 下载积分: 资产 -2 信元, 下载支出 2 信元

Adaptive Filters[1].part09.rar

790.64 KB, 下载次数: 822 , 下载积分: 资产 -2 信元, 下载支出 2 信元

发表于 2008-6-6 04:13:10 | 显示全部楼层
好书要顶!!
发表于 2008-6-6 07:21:10 | 显示全部楼层
unbelieved -able , after years to years , and finally I found this book's latest version
thanks buddy , you are wonderful man , thanks ten thousands

the scan quality is very very good that I never saw, it must required many time to scan
really amazng , buddy , well done

Sayed's book is more practicial than Hakin's , it is worthy study more detail ~~~~

[ 本帖最后由 Jason.tschen 于 2008-6-6 07:25 编辑 ]
发表于 2008-6-6 10:45:42 | 显示全部楼层
Thanks!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条


小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-12-22 21:40 , Processed in 0.062447 second(s), 10 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表