|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
Design of Energy Efficient Successive-Approximation Analog-to-Digital Converter
研究生 黄冠颖
本论文主要实现了两个逐渐趋近式模拟数字转换器。在第一个转换器中,我们利用调整开关的数量大小来得到新的电阻电容时间常数,藉以提升模拟数字转换器的速度。此外,此一设计使用自我时间控制的方法去控制比较器,这样可以节省一半左右的功率消耗。实验结果显示,利用 0.13 μm的制程,这个8位每秒取样两千七百万次的逐渐趋近式模拟数字转换器平均消耗功率为385 μW,每次转换所消耗的平均能量约为105 fJ。
于第二个转换器中,我们采用新的电容串架构,再加上被动式电荷重新分布的机制来提升转换器的速度,同时降低电容串部分的功率消耗,而且在转换器输入端的电容值也可以明显的减小。这个8位每秒取样五千万次的被动式电荷重新分布逐渐趋近式模拟数字转换器同样利用TSMC 0.13 μm的制程来进行设计,平均消耗功率为294 μW,每次转换所消耗平均能量约为41 fJ。
In this thesis, two successive-approximation (SAR) analog-to-digital converters (ADCs) are proposed. In the first ADC, a novel RC time constant capacitor array, which adjusts the numbers of switch, is used to speed up the conversion rate. And a self timing controller is used to control the comparator, which can save half of the power consumption of the comparator. Simulation results of the first ADC, an 8-bit 27 MS/s SAR ADC, show that the total power consumption is 385 μW and the average energy consumption per conversion step is 105 fJ in the TSMC 0.13 μm process.
In order to further increase the conversion rate, a novel capacitor array with passive charge-sharing (PCS) technique, which can effectively reduce the total power consumption and the input capacitance, is used in the second ADC. Simulation results of the second ADC, an 8-bit 50 MS/s PCS SAR ADC, show that the total power consumption is 294 μW and the average energy consumption per conversion step is 41 fJ in the TSMC 0.13 μm process.
Abstract
List of Figures
List of Tables
Chapter 1 Introduction
1.1 Motivation
01
1.2 Energy Efficient of Conventional ADCs
02
1.3 Thesis Organization
03
Chapter 2 The Principle and Architectures of Successive Approximation A/D Converters
2.1 Principle of Successive Approximation Algorithm
05
2.2 The Architecture of Successive Approximation ADC
07
2.2.1 DAC-Based Successive Approximation
07
2.2.2 Unipolar Charge-Redistribution A/D
07
2.2.3 Signed Charge-Redistribution A/D with a Single Reference Voltage
11
2.3 Capacitive Digital-to-Analog Converter
14
2.3.1 Binary-Weighted Capacitor Array
14
2.3.2 C-2C Capacitor Array
15
2.3.3 Pseudo C-2C Capacitor Array
16
2.4 Latched Comparator
18
2.4.1 Static Latched Comparator
19
2.4.2 Class-AB Latched Comparator
20
2.4.3 Dynamic Latched Comparator
21
Chapter 3 An 8-Bit 27MS/s Successive Approximation A/D Converter
3.1 Motivation
22
3.2 The Architecture of Proposed Successive Approximation A/D Converter
23
3.2.1 Sample and Hold
25
3.2.2 Comparator with Rail-to-Rail Range
25
3.2.3 Digital-to-Analog Converter (DAC)
28
3.3 Simulation Results
30
3.3.1 Functional simulation
30
3.3.2 Pre-Layout Simulation Result
31
3.3.3 Post-Layout Simulation Result
35
Chapter 4 Energy Efficient Passive Charge-Sharing (PCS) Successive Approximation A/D Converter
4.1 Motivation
40
4.2 The Architectures of Conventional Passive Charge-Sharing SAR ADC
41
4.2.1 Capacitor Array
43
4.2.2 Comparator
44
4.2.3 Digital Control Circuit
45
4.3 The Architectures of Proposed Passive Charge-Sharing SAR ADC
46
4.3.1 Capacitor Array
48
4.3.2 Comparator
49
4.3.3 Digital Control Circuit
51
4.4 Simulation Results
52
4.4.1 Functional Simulation
52
4.4.2 Pre-Layout Simulation
53
Chapter 5 Conclusion and Future Works
5.1 Conclusion
56
5.2 Future Works
57
Reference
Reference
[1]. J. Craninckx, G. van der Plas, ” A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-sharing SAR ADC in 90nm Digital CMOS,” ISSCC Dig. Tech. Papers, pp.246-247 Fed. 2007.
[2]. N. Verma and A. Vhandrakasan, “A 25mW 100kS/s 12b ADC for wireless Micro-Sensor Applications”, ISSCC Dig. Tech. Papers, pp 222-23, Feb., 2006.
[3]. S. Chen and R. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13 mm CMOS.” ISSCC Dig. Tech. Papers, pp 574-575, Feb., 2006.
[4]. G. Van der Plas, S. Decoutere and S. Donnay, “A 0.16pF/conversion-step 2.5mW 1.25GS/s 4b ADC in 90nm Digital CMOS Process”, ISSCC Dig. Tech. Papers, pp. 566-567, Feb., 2006.
[5]. J. L. McCreary et al.,“All-MOS charge redistribution analog-to-digital conversion techniques- Part I .“IEEE J. Solid-State Circuit, VOL SC-10, pp. 371-379, Dec. 1975.
[6]. Gilbert Promitzer, “12-bit Low-Power Differential Switched Capacitor Non-calibrating Successive Approximation ADC with 1 MS/s, ”IEEE J. Solid-State Circuit, VOL. 36, NO.7, pp.1138-1143, July 2001
[7]. David A Johns & Ken Martin, “Analog Integrated Circuit Design” John Wiley & Sons, 1997.
[8]. Lin Cong, “Pseudo C-2C ladder-based data converter technique,” IEEE Trans. Circuits Syst. II, vol.48, pp.927-929, Oct. 2001.
[9]. Jens Sauerbrey, et al.,”A 0.5V 1-uW successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, pp. 1261-1265, July 2003.
[10]. Guo-Ming Lee and Hao-Chiao Hong, “ Design of An Ultra-low Power Successive Approximation Analog-to-Digital Converter for Wireless Sensor Networks“ 2006, VLSI CAD,
[11]. Shuo-Wei Chen “Power Efficient System and A/D Converter Design for Ultra-Wideband Radio” Electrical Engineering and Computer Sciences University of California at Berkeley, PHD. Thesis, May 2006.
[12]. Y. S. Yee, L. M. Termam, and L. G.. Heller, ”A two-stage weighted capacitor network for D/A-A/D conversion,” IEEE J. Solid-State Circuit, VOL. SC-14, pp. 778-781, August 1979.
[13]. P. M. Figueiredo and J. C. Vital, “KickBack Noise Reduction Techniques for CMOS Latched Comparators,” IEEE trans. on circuits and systems, vol. 53, no.7, July 2006
[14]. H. C. Chow, B. W. Chen, H. C. Chen, W. S. Feng, “A 1.8 V, 0.3 mW, 10-bit SA-ADC with new self-timed timing control for biomedical applications” IEEE ISCAS, Circuit and System, VOL .1, pp. 736-739, May 2005.
[15]. A. S. Sedra and K. C. Smith, “Microelectronic Circuits” 3rd ed. Saunders College Publishing/HRW, NEW Jersey, 1991.
[16]. 許哲豪 ”12-bit Fully Differential Switched Capacitor Non-calibrating Successive Approximation ADC Using Single Reference Voltage” 成功大學電機工程學系碩士論文, July 2003
[17]. H. J. M. Veendrick, “The behavior of flip-flops used as synchronizers and prediction of their failure rate," IEEE J. Solid-State Circuits, vol. SC-15, pp. 169-176,
April 1980.
[18]. Chi-Sheng Lin; Bin-Da Liu “A new successive approximation architecture for low-power low-cost CMOS A/D converter “IEEE J. Solid-State Circuits, Volume 38, Issue 1, Jan. 2003 Page(s):54 - 62
[19]. Dabbagh-Sadeghipour, K.; Hadidi, K.; Khoei, A “ A new architecture for area and power efficient, high conversion rate successive approximation ADCs“
2004 NEWCAS, Circuit and Systems 2004.The 2nd Annual IEEE Northeast workshop on 20-23 June 2004 Page(s):253 - 256 |
|