|
楼主 |
发表于 2008-8-2 14:49:53
|
显示全部楼层
Modeling and analysis on circuit and system level with matlab and simulink
BOOK3
Signals and Systems - with MATLAB Computing and Simulink Modeling
1 Elementary Signals 1 −1
1.1 Signals Described in Math Form .............................................................................1 −1
1.2 The Unit Step Function ..........................................................................................1 −2
1.3 The Unit Ramp Function ......................................................................................1 −10
1.4 The Delta Function ............................................................................................... 1 −11
1.4.1 The Sampling Property of the Delta Function ............................................1 −12
1.4.2 The Sifting Property of the Delta Function ................................................1 −13
1.5 Higher Order Delta Functions...............................................................................1 −14
1.6 Summary ................................................................................................................1 −22
1.7 Exercises.................................................................................................................1 −23
1.8 Solutions to End −of −Chapter Exercises ................................................................1 −24
MATLAB Computing
Pages 1 −20, 1 −21
Simulink Modeling
Page 1 −18
2 The Laplace Transformation 2 −1
2.1 Definition of the Laplace Transformation...............................................................2 −1
2.2 Properties and Theorems of the Laplace Transform ...............................................2 −2
2.2.1 Linearity Property ........................................................................................2 −3
2.2.2 Time Shifting Property .................................................................................2 −3
2.2.3 Frequency Shifting Property ........................................................................2 −4
2.2.4 Scaling Property ...........................................................................................2 −4
2.2.5 Differentiation in Time Domain Property ...................................................2 −4
2.2.6 Differentiation in Complex Frequency Domain Property ...........................2 −6
2.2.7 Integration in Time Domain Property .........................................................2 −6
2.2.8 Integration in Complex Frequency Domain Property .................................2 −8
2.2.9 Time Periodicity Property ............................................................................2 −8
2.2.10 Initial Value Theorem..................................................................................2 −9
2.2.11 Final Value Theorem .................................................................................2 −10
2.2.12 Convolution in Time Domain Property.....................................................2 −11
2.2.13 Convolution in Complex Frequency Domain Property.............................2 −12
2.3 The Laplace Transform of Common Functions of Time.......................................2 −14
2.3.1 The Laplace Transform of the Unit Step Function ..........................2 −14
2.3.2 The Laplace Transform of the Ramp Function ................................2 −14
2.3.3 The Laplace Transform of ..............................................................2 −15
t n u 0 t ()
2.3.4 The Laplace Transform of the Delta Function ................................. 2 −18
2.3.5 The Laplace Transform of the Delayed Delta Function .............. 2 −18
2.3.6 The Laplace Transform of .......................................................... 2 −19
2.3.7 The Laplace Transform of ....................................................... 2 −19
2.3.8 The Laplace Transform of ......................................................... 2 −20
2.3.9 The Laplace Transform of ......................................................... 2 −20
2.3.10 The Laplace Transform of ................................................. 2 −21
2.3.11 The Laplace Transform of ................................................. 2 −22
2.4 The Laplace Transform of Common Waveforms .................................................. 2 −23
2.4.1 The Laplace Transform of a Pulse............................................................... 2 −23
2.4.2 The Laplace Transform of a Linear Segment .............................................. 2 −23
2.4.3 The Laplace Transform of a Triangular Waveform .................................... 2 −24
2.4.4 The Laplace Transform of a Rectangular Periodic Waveform.................... 2 −25
2.4.5 The Laplace Transform of a Half −Rectified Sine Waveform ..................... 2 −26
2.5 Using MATLAB for Finding the Laplace Transforms of Time Functions ............ 2 −27
2.6 Summary ................................................................................................................ 2 −28
2.7 Exercises................................................................................................................. 2 −31
The Laplace Transform of a Sawtooth Periodic Waveform ............................... 2 −32
The Laplace Transform of a Full −Rectified Sine Waveform.............................. 2 −32
2.8 Solutions to End −of −Chapter Exercises................................................................. 2 −33
3 The Inverse Laplace Transform 3 −1
3.1 The Inverse Laplace Transform Integral ..................................................................3 −1
3.2 Partial Fraction Expansion........................................................................................3 −1
3.2.1 Distinct Poles..................................................................................................3 −2
3.2.2 Complex Poles ................................................................................................3 −5
3.2.3 Multiple (Repeated) Poles..............................................................................3 −8
3.3 Case where F(s) is Improper Rational Function.....................................................3 −13
3.4 Alternate Method of Partial Fraction Expansion...................................................3 −15
3.5 Summary .................................................................................................................3 −19
3.6 Exercises..................................................................................................................3 −21
3.7 Solutions to End −of −Chapter Exercises .................................................................3 −22
MATLAB Computing
Pages 3 −3, 3 −4, 3 −5, 3 −6, 3 −8, 3 −10, 3 −12, 3 −13, 3 −1 4, 3 −22
4 Circuit Analysis with Laplace Transforms 4 −1
4.1 Circuit Transformation from Time to Complex Frequency.................................... 4 −1
4.1.1 Resistive Network Transformation ............................................................... 4 −1
4.1.2 Inductive Network Transformation .............................................................. 4 −1
4.1.3 Capacitive Network Transformation ............................................................ 4 −1
4.2 Complex Impedance Z(s).........................................................................................4 −8
4.3 Complex Admittance Y(s) .....................................................................................4 −11
4.4 Transfer Functions .................................................................................................4 −13
4.5 Using the Simulink Transfer Fcn Block.................................................................4 −17
4.6 Summary.................................................................................................................4 −20
4.7 Exercises .................................................................................................................4 −21
4.8 Solutions to End −of −Chapter Exercises.................................................................4 −24
5 State Variables and State Equations 5 −1
5.1 Expressing Differential Equations in State Equation Form................................... 5 −1
5.2 Solution of Single State Equations ........................................................................ 5 −6
5.3 The State Transition Matrix ................................................................................. 5 −9
5.4 Computation of the State Transition Matrix ...................................................... 5 −11
5.4.1 Distinct Eigenvalues ................................................................................. 5 −11
5.4.2 Multiple (Repeated) Eigenvalues ............................................................. 5 −15
5.5 Eigenvectors......................................................................................................... 5 −18
5.6 Circuit Analysis with State Variables.................................................................. 5 −22
5.7 Relationship between State Equations and Laplace Transform.......................... 5 −30
5.8 Summary.............................................................................................................. 5 −38
5.9 Exercises .............................................................................................................. 5 −41
5.10 Solutions to End −of −Chapter Exercises .............................................................. 5 −43
MATLAB Computing
Pages 5 −14, 5 −15, 5 −18, 5 −26, 5 −36, 5 −48, 5 −51
Simulink Modeling
Pages 5 −27, 5 −37, 5 −45
6 The Impulse Response and Convolution 6 −1
6.1 The Impulse Response in Time Domain ................................................................ 6 −1
6.2 Even and Odd Functions of Time .......................................................................... 6 −4
6.3 Convolution ............................................................................................................ 6 −7
6.4 Graphical Evaluation of the Convolution Integral................................................. 6 −8
6.5 Circuit Analysis with the Convolution Integral ................................................... 6 −18
6.6 Summary ............................................................................................................... 6 −21
6.7 Exercises................................................................................................................ 6 −23
6.8 Solutions to End −of −Chapter Exercises................................................................ 6 −25
MATLAB Applications
Pages 6 −12, 6 −15, 6 −30
7 Fourier Series 7 −1
7.1 Wave Analysis......................................................................................................... 7 −1
7.2 Evaluation of the Coefficients................................................................................. 7 −2
7.3 Symmetry in Trigonometric Fourier Series ............................................................. 7 −6
7.3.1 Symmetry in Square Waveform..................................................................... 7 −8
7.3.2 Symmetry in Square Waveform with Ordinate Axis Shifted........................ 7 −8
7.3.3 Symmetry in Sawtooth Waveform................................................................. 7 −9
7.3.4 Symmetry in Triangular Waveform............................................................... 7 −9
7.3.5 Symmetry in Fundamental, Second, and Third Harmonics........................ 7 −10
7.4 Trigonometric Form of Fourier Series for Common Waveforms.......................... 7 −10
7.4.1 Trigonometric Fourier Series for Square Waveform................................... 7 −11
7.4.2 Trigonometric Fourier Series for Sawtooth Waveform............................... 7 −14
7.4.3 Trigonometric Fourier Series for Triangular Waveform ............................. 7 −16
7.4.4 Trigonometric Fourier Series for Half −Wave Rectifier Waveform............. 7 −17
7.4.5 Trigonometric Fourier Series for Full −Wave Rectifier Waveform.............. 7 −20
7.5 Gibbs Phenomenon ............................................................................................... 7 −24
7.6 Alternate Forms of the Trigonometric Fourier Series .......................................... 7 −24
7.7 Circuit Analysis with Trigonometric Fourier Series............................................. 7 −28
7.8 The Exponential Form of the Fourier Series ........................................................ 7 −31
7.9 Symmetry in Exponential Fourier Series .............................................................. 7 −33
7.9.1 Even Functions ........................................................................................... 7 −33
7.9.2 Odd Functions ............................................................................................ 7 −34
7.9.3 Half-Wave Symmetry ................................................................................. 7 −34
7.9.4 No Symmetry .............................................................................................. 7 −34
7.9.5 Relation of to ................................................................................ 7 −34
7.10 Line Spectra.......................................................................................................... 7 −36
7.11 Computation of RMS Values from Fourier Series................................................ 7 −41
7.12 Computation of Average Power from Fourier Series ........................................... 7 −44
7.13 Evaluation of Fourier Coefficients Using Excel® ................................................ 7 −46
7.14 Evaluation of Fourier Coefficients Using MATLAB® ........................................ 7 −47
7.15 Summary............................................................................................................... 7 −50
7.16 Exercises ............................................................................................................... 7 −53
7.17 Solutions to End −of −Chapter Exercises ............................................................... 7 −55
8 The Fourier Transform 8 −1
8.1 Definition and Special Forms ................................................................................ 8 −1
8.2 Special Forms of the Fourier Transform................................................................ 8 −2
8.2.1 Real Time Functions.................................................................................. 8 −3
8.2.2 Imaginary Time Functions ......................................................................... 8 −6
8.3 Properties and Theorems of the Fourier Transform.............................................. 8 −9
8.3.1 Linearity...................................................................................................... 8 −9
8.3.2 Symmetry.................................................................................................... 8 −9
8.3.3 Time Scaling............................................................................................. 8 −10
8.3.4 Time Shifting............................................................................................ 8 −11
8.3.5 Frequency Shifting ................................................................................... 8 −11
8.3.6 Time Differentiation ................................................................................ 8 −12
8.3.7 Frequency Differentiation ........................................................................ 8 −13
8.3.8 Time Integration ...................................................................................... 8 −13
8.3.9 Conjugate Time and Frequency Functions.............................................. 8 −13
8.3.10 Time Convolution .................................................................................... 8 −14
8.3.11 Frequency Convolution............................................................................ 8 −15
8.3.12 Area Under ........................................................................................ 8 −15
8.3.13 Area Under ...................................................................................... 8 −15
8.3.14 Parseval’s Theorem................................................................................... 8 −16
8.4 Fourier Transform Pairs of Common Functions.................................................. 8 −18
8.4.1 The Delta Function Pair .......................................................................... 8 −18
8.4.2 The Constant Function Pair .................................................................... 8 −18
8.4.3 The Cosine Function Pair ........................................................................ 8 −19
8.4.4 The Sine Function Pair............................................................................. 8 −20
8.4.5 The Signum Function Pair........................................................................ 8 −20
8.4.6 The Unit Step Function Pair .................................................................... 8 −22
8.4.7 The Function Pair .................................................................... 8 −24
8.4.8 The Function Pair ............................................................... 8 −24
8.4.9 The Function Pair ............................................................... 8 −25
8.5 Derivation of the Fourier Transform from the Laplace Transform .................... 8 −25
8.6 Fourier Transforms of Common Waveforms ...................................................... 8 −27
8.6.1 The Transform of ....................................... 8 −27
8.6.2 The Transform of ........................................... 8 −28
8.6.3 The Transform of ........... 8 −29
8.6.4 The Transform of .............................. 8 −30
8.6.5 The Transform of a Periodic Time Function with Period T..................... 8 −31
8.6.6 The Transform of the Periodic Time Function .... 8 −32
8.7 Using MATLAB for Finding the Fourier Transform of Time Functions............ 8 −33
8.8 The System Function and Applications to Circuit Analysis ............................... 8 −34
8.9 Summary.............................................................................................................. 8 −42
8.10 Exercises............................................................................................................... 8 −47
8.11 Solutions to End −of −Chapter Exercises .............................................................. 8 −49
MATLAB Computing
Pages 8 −33, 8 −34, 8 −50, 8 −54, 8 −55, 8 −56, 8 −59, 8 −60
9 Discrete −Time Systems and the Z Transform 9 −1
9.1 Definition and Special Forms of the Z Transform............................................... 9 −1
9.2 Properties and Theorems of the Z Transform...................................................... 9 −3
9.2.1 Linearity ..................................................................................................... 9 −3
9.2.2 Shift of in the Discrete −Time Domain ..................................... 9 −3
9.2.3 Right Shift in the Discrete −Time Domain ................................................ 9 −4
9.2.4 Left Shift in the Discrete −Time Domain................................................... 9 −5
9.2.5 Multiplication by in the Discrete −Time Domain................................. 9 −6
9.2.6 Multiplication by in the Discrete −Time Domain ........................... 9 −6
9.2.7 Multiplication by and in the Discrete −Time Domain ..................... 9 −6
9.2.8 Summation in the Discrete −Time Domain ............................................... 9 −7
9.2.9 Convolution in the Discrete −Time Domain ............................................. 9 −8
9.2.10 Convolution in the Discrete −Frequency Domain ..................................... 9 −9
9.2.11 Initial Value Theorem ............................................................................... 9 −9
9.2.12 Final Value Theorem............................................................................... 9 −10
9.3 The Z Transform of Common Discrete −Time Functions.................................. 9 −11
9.3.1 The Transform of the Geometric Sequence.............................................9 −11
9.3.2 The Transform of the Discrete −Time Unit Step Function ......................9 −14
9.3.3 The Transform of the Discrete −Time Exponential Sequence .................9 −16
9.3.4 The Transform of the Discrete −Time Cosine and Sine Functions ..........9 −16
9.3.5 The Transform of the Discrete −Time Unit Ramp Function....................9 −18
9.4 Computation of the Z Transform with Contour Integration .............................9 −20
9.5 Transformation Between s −and z −Domains .......................................................9 −22
9.6 The Inverse Z Transform ...................................................................................9 −25
9.6.1 Partial Fraction Expansion ..................................................................... 9 −25
9.6.2 The Inversion Integral............................................................................ 9 −32
9.6.3 Long Division of Polynomials ................................................................ 9 −36
9.7 The Transfer Function of Discrete −Time Systems ............................................ 9 −38
9.8 State Equations for Discrete −Time Systems ...................................................... 9 −45
9.9 Summary............................................................................................................. 9 −48
9.10 Exercises ............................................................................................................. 9 −53
9.11 Solutions to End −of −Chapter Exercises ............................................................. 9 −55
MATLAB Computing
Pages 9 −35, 9 −37, 9 −38, 9 −41, 9 −42, 9 −59, 9 −61
Simulink Modeling
Page 9 −44
Excel Plots
Pages 9 −35, 9 −44
10 The DFT and the FFT Algorithm 10 −1
10.1 The Discrete Fourier Transform (DFT) ............................................................10 −1
10.2 Even and Odd Properties of the DFT................................................................10 −9
10.3 Common Properties and Theorems of the DFT .............................................. 10 −10
10.3.1 Linearity ...............................................................................................10 −10
10.3.2 Time Shift ............................................................................................10 −11
10.3.3 Frequency Shift ....................................................................................10 −12
10.3.4 Time Convolution ...............................................................................10 −12
10.3.5 Frequency Convolution .......................................................................10 −13
10.4 The Sampling Theorem ...................................................................................10 −13
10.5 Number of Operations Required to Compute the DFT ..................................10 −16
10.6 The Fast Fourier Transform (FFT)..................................................................10 −17
10.7 Summary...........................................................................................................10 −28
10.8 Exercises ...........................................................................................................10 −31
10.9 Solutions to End −of −Chapter Exercises...........................................................10 −33
MATLAB Computing
Pages 10 −5, 10 −7, 10 −34
Excel Analysis ToolPak
Pages 10 −6, 10 −8
11 Analog and Digital Filters
11.1 Filter Types and Classifications......................................................................... 11 −1
11.2 Basic Analog Filters........................................................................................... 11 −2
11.2.1 RC Low −ass Filter ............................................................................... 11 −2
11.2.2 RC High −ass Filter .............................................................................. 11 −4
11.2.3 RLC Band −ass Filter.............................................................................11 −7
11.2.4 RLC Band −Elimination Filter ................................................................11 −8
11.3 Low −Pass Analog Filter Prototypes ..................................................................11 −10
11.3.1 Butterworth Analog Low −Pass Filter Design .......................................11 −14
11.3.2 Chebyshev Type I Analog Low −Pass Filter Design..............................11 −25
11.3.3 Chebyshev Type II Analog Low −Pass Filter Design ............................11 −38
11.3.4 Elliptic Analog Low −Pass Filter Design ...............................................11 −39
11.4 High −Pass, Band −Pass, and Band −Elimination Filter Design..........................11 −41
11.5 Digital Filters ....................................................................................................11 −51
11.6 Digital Filter Design with Simulink..................................................................11 −70
11.6.1 The Direct Form I Realization of a Digital Filter.................................11 −70
11.6.2 The Direct Form II Realization of a Digital Filter................................11 −71
11.6.3 The Series Form Realization of a Digital Filter ....................................11 −73
11.6.4 The Parallel Form Realization of a Digital Filter .................................11 −75
11.6.5 The Digital Filter Design Block............................................................11 −78
11.7 Summary...........................................................................................................11 −87
11.8 Exercises ...........................................................................................................11 −91
11.9 Solutions to End −of −Chapter Exercises ...........................................................11 −97
MATLAB Computing
Pages 11 −3, 11 −4, 11 −6, 11 −7, 11 −9, 11 −15, 11 −19, 11 −23, 11 −24, 11 −31,
11 −35, 11 −36, 11 −37, 11 −38, 11 −40, 11 −41, 11 −42, 11 −43, 11 −45, 11 −46,
11 −48, 11 −50, 11 −55, 11 −56, 11 −57, 11 −60, 11 −62, 11 −64, 11 −67, 11 −68,
and 11 −97 through 11 −106
Simulink Modeling
Pages 11 −71, 11 −74, 11 −77, 11 −78, 11 −80, 11 −82, 11 −83, 11 −84
A Introduction to MATLAB A −1
A.1 MATLAB® and Simulink®........................................................................... A −1
A.2 Command Window ......................................................................................... A −1
A.3 Roots of Polynomials ....................................................................................... A −3
A.4 Polynomial Construction from Known Roots ................................................. A −4
A.5 Evaluation of a Polynomial at Specified Values .............................................. A −6
A.6 Rational Polynomials ....................................................................................... A −8
A.7 Using MATLAB to Make Plots..................................................................... A −10
A.8 Subplots ......................................................................................................... A −18
A.9 Multiplication, Division, and Exponentiation .............................................. A −18
A.10 Script and Function Files .............................................................................. A −26
A.11 Display Formats ............................................................................................. A −31 |
|