在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
芯片精品文章合集(500篇!) 创芯人才网--重磅上线啦!
查看: 2630|回复: 14

[资料] Fourier and Laplace Transforms, 2003

[复制链接]
发表于 2021-2-19 14:30:25 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
image.png
Fourier and Laplace Transforms
R. J. Beerends, H. G. ter Morsche, J. C. van den Berg and E. M. van de Vrie

Translated from Dutch by R. J. Beerends

CAMBRIDGE UNIVERSITY PRESS, 2003

Preface page ix
Introduction 1

Part 1 Applications and foundations
1 Signals and systems 7
1.1 Signals and systems 8
1.2 Classification of signals 11
1.3 Classification of systems 16
2 Mathematical prerequisites 27
2.1 Complex numbers, polynomials and rational functions 28
2.2 Partial fraction expansions 35
2.3 Complex-valued functions 39
2.4 Sequences and series 45
2.5 Power series 51

Part 2 Fourier series
3 Fourier series: definition and properties 60
3.1 Trigonometric polynomials and series 61
3.2 Definition of Fourier series 65
3.3 The spectrum of periodic functions 71
3.4 Fourier series for some standard functions 72
3.5 Properties of Fourier series 76
3.6 Fourier cosine and Fourier sine series 80
4 The fundamental theorem of Fourier series 86
4.1 Bessel’s inequality and Riemann–Lebesgue lemma 86
4.2 The fundamental theorem 89
4.3 Further properties of Fourier series 95
4.4 The sine integral and Gibbs’ phenomenon 105
5 Applications of Fourier series 113
5.1 Linear time-invariant systems with periodic input 114
5.2 Partial differential equations 122

Part 3 Fourier integrals and distributions
6 Fourier integrals: definition and properties 138
6.1 An intuitive derivation 138
6.2 The Fourier transform 140
6.3 Some standard Fourier transforms 144
6.4 Properties of the Fourier transform 149
6.5 Rapidly decreasing functions 156
6.6 Convolution 158
7 The fundamental theorem of the Fourier integral 164
7.1 The fundamental theorem 165
7.2 Consequences of the fundamental theorem 172
7.3 Poisson’s summation formula∗ 181
8 Distributions 188
8.1 The problem of the delta function 189
8.2 Definition and examples of distributions 192
8.3 Derivatives of distributions 197
8.4 Multiplication and scaling of distributions 203
9 The Fourier transform of distributions 208
9.1 The Fourier transform of distributions: definitionand examples 209
9.2 Properties of the Fourier transform 217
9.3 Convolution 221
10 Applications of the Fourier integral 229
10.1 The impulse response 230
10.2 The frequency response 234
10.3 Causal stable systems and differential equations 239
10.4 Boundary and initial value problems for partialdifferential equations 243

Part 4 Laplace transforms
11 Complex functions 253
11.1 Definition and examples 253
11.2 Continuity 256
11.3 Differentiability 259
11.4 The Cauchy–Riemann equations∗ 263
12 The Laplace transform: definition and properties 267
12.1 Definition and existence of the Laplace transform 268
12.2 Linearity, shifting and scaling 275
12.3 Differentiation and integration 280
13 Further properties, distributions, and the fundamentaltheorem 288
13.1 Convolution 289
13.2 Initial and final value theorems 291
13.3 Periodic functions 294
13.4 Laplace transform of distributions 297
13.5 The inverse Laplace transform 303
14 Applications of the Laplace transform 310
14.1 Linear systems 311
14.2 Linear differential equations with constant coefficients 323
14.3 Systems of linear differential equations with constantcoefficients 327
14.4 Partial differential equations 330

Part 5 Discrete transforms
15 Sampling of continuous-time signals 340
15.1 Discrete-time signals and sampling 340
15.2 Reconstruction of continuous-time signals 344
15.3 The sampling theorem 347
15.4 The aliasing problem∗ 351
16 The discrete Fourier transform 356
16.1 Introduction and definition of the discreteFourier transform 356
16.2 Fundamental theorem of the discrete Fourier transform 362
16.3 Properties of the discrete Fourier transform 364
16.4 Cyclical convolution 368
17 The Fast Fourier Transform 375
17.1 The DFT as an operation on matrices 376
17.2 The N-point DFT with N = 2m 380
17.3 Applications 383
18 The z-transform 391
18.1 Definition and convergence of the z-transform 392
18.2 Properties of the z-transform 396
18.3 The inverse z-transform of rational functions 400
18.4 Convolution 404
18.5 Fourier transform of non-periodic discrete-time signals 407
19 Applications of discrete transforms 412
19.1 The impulse response 413
19.2 The transfer function and the frequency response 419
19.3 LTD-systems described by difference equations 424

Literature 429
Tables of transforms and properties 432
Index 444

Fourier and Laplace Transforms, 2003.zip

3.99 MB, 下载次数: 74 , 下载积分: 资产 -2 信元, 下载支出 2 信元

发表于 2021-2-19 18:26:06 | 显示全部楼层
kankan
发表于 2021-2-19 18:48:43 | 显示全部楼层
谢谢,好书
发表于 2021-2-19 20:08:24 | 显示全部楼层
Thank you very much.
发表于 2021-2-20 07:25:39 | 显示全部楼层
谢谢分享
发表于 2021-2-20 07:42:29 | 显示全部楼层
Thanks a lot.
发表于 2021-2-20 08:03:52 | 显示全部楼层
感谢
发表于 2021-2-21 10:00:35 | 显示全部楼层
多谢分享
发表于 2021-2-25 14:35:00 | 显示全部楼层
thanks
发表于 2021-12-13 10:44:12 | 显示全部楼层
谢谢
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条


小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-12-19 01:05 , Processed in 0.026110 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表