|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
IEEE 802
Wireless Systems
Protocols, Multi-hop Mesh/Relaying,
Performance and Spectrum
Coexistence
Bernhard H. Walke
ComNets, RWTH Aachen University, Germany
Stefan Mangold
Swisscom Innovations, Switzerland
Lars Berlemann
ComNets, RWTH Aachen University, Germany
Contents
Preface xvii
1 Introduction 1
Bernhard H. Walke, Guido Hiertz and Lars Berlemann
1.1 Standardization 1
1.2 Next-generation Systems 3
1.3 The IEEE 802 Project 4
1.4 Motivation and Outline 5
2 Wireless Communication – Basics 7
Bernhard H. Walke, Lars Berlemann, Guido Hiertz, Christian Hoymann, Ingo Forkel
and Stefan Mangold
2.1 Radio Transmission Fundamentals 7
2.1.1 Free-space Propagation 8
2.1.2 Two-path Propagation Over Flat Terrain 9
2.1.3 Attenuation 10
2.1.4 Fading 11
2.1.5 Shadowing 12
2.1.6 Filtering and Transmit Spectrum Masks 13
2.1.7 Propagation Models 13
2.1.7.1 One-slope Model 14
2.1.7.2 Hata–Okumura Model 14
2.1.7.3 Walfish–Ikegami Model 15
2.1.7.4 Dual-slope Model 15
2.1.7.5 Berg Model 16
2.1.8 Signal-to-Interference Ratio (SIR) 17
2.1.9 Noise – An Additional Source of Interference 18
2.1.10 Signal to Interference and Noise Ratio (SINR) 18
2.1.11 Interference Range 19
2.1.12 Digital Modulation 19
2.1.13 Modulation and Coding of Radio Signals 20
2.2 Duplexing Schemes 22
2.2.1 Time Division Duplex 22
2.2.2 Frequency Division Duplex 23
2.3 Multiplexing 23
2.3.1 Frequency Division Multiplex 23
2.3.2 Time Division Multiplex 24
2.3.3 Code Division Multiplex 25
2.3.4 Space Division Multiplex 25
2.3.5 Orthogonal Frequency Division Multiplex 25
2.3.5.1 Pilot Tones and Preambles 26
2.3.5.2 Fast Fourier Transformation (FFT) 27
2.3.5.3 Cyclic Prefix 28
2.4 Switching in Communication Networks 29
2.4.1 Circuit Switching 29
2.4.2 Packet Switching 29
2.5 Channel Coding for Error Correction and Error Detection 30
2.5.1 Forward Error Correction 30
2.5.2 Automatic Repeat Request Protocols 30
2.5.2.1 Send-and-Wait 31
2.5.2.2 Go-back-N 32
2.5.2.3 Selective-Reject 32
2.5.2.4 Summary 32
2.5.3 Hybrid Automatic Repeat Request 33
2.6 Medium Access Control (MAC) Protocols 33
2.6.1 ALOHA 34
2.6.1.1 Pure ALOHA 35
2.6.1.2 Slotted ALOHA 36
2.6.1.3 Comparison of Pure and Slotted ALOHA 37
2.6.2 Carrier Sense Multiple Access 37
2.6.2.1 CSMA Variants 38
2.6.2.2 CSMA/CD 40
2.6.2.3 CSMA/CA 41
2.6.3 Polling 41
2.6.4 Summary 41
3 Radio Spectrum Regulation 43
Lars Berlemann and Bernhard H. Walke
3.1 Regulation Bodies and Global Institutions 44
3.1.1 International Telecommunication Union 44
3.1.2 Europe 45
3.1.3 Germany 45
3.1.4 Japan 46
3.1.5 China 46
3.1.6 United States 46
3.2 Licensed and Unlicensed Spectrum 47
3.2.1 Licensed Spectrum 47
3.2.2 The Problem with Licensing 47
3.2.3 Unlicensed Spectrum 48
3.2.3.1 Europe 48
3.2.3.2 United States 49
3.2.4 Part 15 Regulation 50
3.2.5 Tragedy of the Commons in Spectrum Regulation 50
3.3 Open Spectrum 51
3.4 Summary 52
4 Mesh Networks – Basics 53
Guido Hiertz, Erik Weiss and Bernhard H. Walke
4.1 Introduction 54
4.2 Classification of Wireless Mesh Networks 57
4.3 General Problem Statement 58
4.3.1 Path Selection 58
4.3.2 Medium Access Control 59
4.4 Exploiting the Capacity of the Radio Channel by Spatial Reuse 59
4.4.1 Hidden Devices – Potential Interferers 61
4.4.2 Exposed Devices – Unused Capacity 62
4.5 Fairness and Congestion Avoidance 63
4.6 Routing 65
4.6.1 Routing Algorithms 65
4.6.1.1 Ad-hoc On-demand Distance Vector Routing (AODV) 66
4.6.1.2 Route Discovery 66
4.6.1.3 Route Maintenance 68
4.6.1.4 Local Repair 68
4.6.2 Common Link Layer Behavior (Link Adaptation) 68
4.6.3 Link Breakage Prediction 70
4.6.4 Actions for Expected Link Break 71
4.6.5 Early Route Rearrangement (ERRA) 72
4.6.6 Early Route Update (ERU) 73
4.6.7 Simulation Results 74
4.6.8 Conclusions 75
4.7 Summary 75
5 IEEE 802.11 Wireless Local Area Networks 77
Stefan Mangold, Lars Berlemann, Matthias Siebert and Bernhard H. Walke
5.1 Scope of 802.11 77
5.2 Reference Model, Architecture, Services, Frame Formats 78
5.2.1 Reference Model 78
5.2.2 Architecture 79
5.2.3 Services 80
5.2.4 802.11 Frame Formats 80
5.3 Physical Layer 82
5.3.1 Frequency Hopping, Direct Sequence Spread Spectrum, and Infrared 83
5.3.2 802.11B Complementary Code Keying, CCK 83
5.3.3 802.11A/G Orthogonal Frequency Division Multiplexing 83
5.4 Medium Access Control Protocol 84
5.4.1 Distributed Coordination Function 84
5.4.1.1 Listen Before Talk 85
5.4.1.2 Timing and Interframe Spaces 85
5.4.1.3 Collision Avoidance 87
5.4.1.4 Recovery Procedure and Retransmissions 88
5.4.1.5 Post-backoff 88
5.4.1.6 Fragmentation 89
5.4.1.7 Hidden Stations and RTS/CTS 90
5.4.2 Synchronization and Cell Search 91
5.4.3 Scanning Procedures in WLAN 802.11 93
5.4.3.1 Passive Scanning 93
5.4.3.2 Active Scanning 93
5.5 Medium Access Control with Support for Quality-of-Service 94
5.5.1 Point Coordination Function 94
5.5.2 QoS Support with PCF 95
5.5.3 QoS Support Mechanisms of 802.11E 95
5.5.4 Improvements of the Legacy 802.11 MAC 96
5.5.5 Contention-based Medium Access 97
5.5.6 EDCA Parameters Per AC 98
5.5.7 Evaluation of Contention-based Medium Access 100
5.5.7.1 Related Work 101
5.5.7.2 EDCA throughput Capacity in an Isolated QBSS with Four
Stations 101
5.5.7.3 EDCA throughput with Increasing Number of
Stations 101
5.5.8 Controlled Medium Access 103
5.5.8.1 QoS Guarantee with HCCA vs. EDCA 103
5.5.8.2 The Superframe 105
5.5.9 Block Acknowledgment 105
5.5.10 Direct Link Protocol (DLP) 107
5.6 Radio Spectrum Management 107
5.6.1 Measurements in 802.11 107
5.6.1.1 Information Transfer 107
5.6.1.2 Specific Measurements in 802.11h 108
5.6.1.3 Basic Report 109
5.6.1.4 Clear Channel Assessment (CCA) Report 109
5.6.1.5 Receive Power Indication (RPI) Histogram Report 109
5.6.2 Specific Measurements in 802.11K 110
5.6.2.1 Channel Load Report 111
5.6.2.2 Noise Histogram Report 112
5.6.2.3 Beacon Report 112
5.6.2.4 Frame Report 113
5.6.2.5 Hidden Station Report 113
5.6.2.6 Medium Sensing Time Histogram Report 113
5.6.2.7 STA Statistics Report 114
5.6.2.8 LCI Report 114
5.6.2.9 Measurement Pause Request 115
5.7 History and Selected Sub-standards, i.e., Amendments 115
5.7.1 IEEE 802.11 115
5.7.2 IEEE 802.11a 115
5.7.3 IEEE 802.11b 115
5.7.4 IEEE 802.11c 116
5.7.5 IEEE 802.11d 116
5.7.6 IEEE 802.11e 116
5.7.7 IEEE 802.11f 116
5.7.8 IEEE 802.11g 116
5.7.9 IEEE 802.11h 117
5.7.10 IEEE 802.11i 117
5.7.11 IEEE 802.11k 117
6 IEEE 802.15 Wireless Personal Area Networks 119
Guido Hiertz, Yunpeng Zang and Bernhard H. Walke
6.1 Scope of 802.15 120
6.1.1 Objectives 120
6.1.2 Different Subgroups 120
6.2 802.15.3 – High-speed Wireless Personal Area Networks 121
6.3 Task Group 3 122
6.3.1 802.15.3 Medium Access Control 122
6.3.1.1 802.15.3 Network Topology 123
6.3.1.2 802.15.3 Medium Access Control 124
6.3.1.3 Contention Access Period (CAP) 124
6.3.1.4 Channel Time Allocation Period (CTAP) 126
6.3.1.5 802.15.3 Data Transmission 126
6.3.1.6 802.15.3 Network Security and Robustness 127
6.3.1.7 802.15.3 Power Management 127
6.3.2 802.15.3 Physical Layer 127
6.4 Task Group 3a 128
6.4.1 DS-UWB Proposal 129
6.4.2 MB-OFDM Proposal 130
6.5 Task Group 3b 133
6.6 Task Group 3c 133
6.7 WiMedia (Multiband OFDM) Alliance MAC Layer 134
6.7.1 Overview 135
6.7.2 Next Generation WPAN – WiMedia MAC 135
6.7.2.1 Medium Access 135
6.7.2.2 Prioritized Contention Access 135
6.7.2.3 Distributed Reservation Protocol 136
6.7.2.4 Transmission Opportunities 138
6.7.2.5 Acknowledgement Policies 138
6.7.2.6 Minimum Interframe Space and Frame Aggregation 138
6.7.2.7 Fragmentation and RTS/CTS Handshake 138
6.7.2.8 Beacon Period and Beacon Frames 138
6.7.3 Simulative Performance Analysis 140
6.7.4 Conclusion 145
6.8 Next-generation WPAN Technologies 145
6.8.1 Market Perspective 145
6.8.2 PHY Technology 145
6.8.3 MAC Design 145
7 IEEE 802.16 Wireless Metropolitan Area Networks 147
Christian Hoymann and Bernhard H. Walke
7.1 Scope of 802.16 147
7.2 Deployment Concept, Reference Model and Target Frequency Bands 148
7.2.1 Deployment Concept 148
7.2.2 Reference Model 149
7.2.3 Target Frequency Bands 150
7.3 History and Different Subgroups 151
7.3.1 History 151
7.3.2 IEEE 802.16-2004 – Base Document 152
7.3.3 IEEE 802.16/Conformance 152
7.3.4 IEEE 802.16.2 Coexistence 152
7.3.5 IEEE 802.16e Mobility 153
7.3.6 IEEE 802.16f/g/i Network Management 153
7.3.7 IEEE 802.16h License Exempt 153
7.3.8 IEEE 802.16j Mobile Multi-hop Relay Study Group 153
7.3.9 ETSI BRAN HiperACCESS and HiperMAN 154
7.3.10 WiMAX Forum 154
7.3.11 Wireless Broadband (WiBro) 154
7.4 Physical Layer 154
7.4.1 Orthogonal Frequency Division Multiplexing in 802.16 155
7.4.1.1 Randomizer 157
7.4.1.2 Forward Error Correction 157
7.4.1.3 Interleaving 157
7.5 Medium Access Control Layer 157
7.5.1 Service-Specific Convergence Sublayer 158
7.5.1.1 Packet Convergence Sublayer 158
7.5.1.2 ATM Convergence Sublayer 159
7.5.2 MAC Common Part Sublayer 159
7.5.2.1 Duplex Modes 160
7.5.2.2 Frame Structure 160
7.5.2.3 Frame Control 162
7.5.2.4 Packet Data Unit Format 165
7.5.2.5 Fragmentation and Packing 166
7.5.2.6 Automatic Repeat Request 166
7.5.2.7 Connection Identifier 167
7.5.2.8 Network Entry 168
7.5.2.9 Connection Management 169
7.5.2.10 Bandwidth Requests and Uplink Scheduling Services 171
7.5.3 Security Sublayer 173
7.6 System Profiles 173
7.6.1 MAC Profiles 173
7.6.2 Physical Layer Profiles 174
7.6.3 RF Profiles, Duplexing Modes and Power Classes 174
7.7 Space Division Multiple Access 174
7.7.1 PHY Layer Comprising an Antenna Array 175
7.7.2 Enhanced PHY Service Access Point 176
7.7.3 SDMA Enhanced Medium Access Control Layer 178
7.7.4 SDMA Scheduling 179
7.8 Performance Evaluation of 802.16 180
7.8.1 Multi-user Multi Phy Mode Scenario 180
7.8.1.1 PHY Layer Configuration and PHY Mode Distribution 180
7.8.1.2 MAC Layer Configuration and Performance Metric 182
7.8.2 Performance Analysis 182
7.8.2.1 System Performance of the Example Scenario 183
7.8.3 Simulative Performance Evaluation 188
7.8.3.1 IEEE 802.16 Simulator 188
7.8.3.2 Simulation Results 189
7.9 Performance of SDMA Enabled 802.16 Networks 192
7.9.1 Scenario and Simulation Environment 192
7.9.2 Downlink Cell Throughput 193
7.9.3 Signal to Interference Plus Noise Ratio 194
7.10 Conclusion 195
8 IEEE 802.11, 802.15 and 802.16 for Mesh Networks 197
Guido Hiertz, Lars Berlemann, Harianto Wijaya, Christian Hoymann,
Stefan Mangold and Bernhard H. Walke
8.1 Approaches to Wireless Mesh Networks in IEEE and Industry 198
8.1.1 Differences between Mesh WPAN, WLAN and WMAN 198
8.1.2 Mesh WLAN 201
8.1.2.1 802.11s 201
8.1.2.2 Summary 207
8.1.3 Mesh WPAN 208
8.1.3.1 Status of Standardization in TG 802.15.5 208
8.1.4 Mesh WMAN 209
8.1.4.1 802.16 Mesh Option 210
8.1.4.2 802.16j 211
8.2 Extensions to IEEE 802 MAC Protocols – Homogeneous Multi-hop Networks 212
8.2.1 IEEE 802.16 Multi-hop Networks 213
8.2.1.1 Multi-hop Operation in the Time and Frequency Domain 213
8.2.1.2 MAC Subframe Embedding 214
8.2.1.3 Hierarchical Beacon with Fixed Slot Allocation 215
8.2.1.4 Time Sharing Wireless Router 216
8.2.1.5 Time Sharing Wireless Router with Spatial Reuse 217
8.2.2 IEEE 802.11e Multi-hop Networks 218
8.2.2.1 Collision Avoidance through Channel Reservation 219
8.2.2.2 Collision Avoidance by Channel Reservation with Spatial Reuse 220
8.2.3 Performance Evaluation Results 220
8.2.3.1 Scenario Description 220
8.2.3.2 Mean Delay vs. Offered Traffic 222
8.2.3.3 System Capacity vs. Distance between BS/HC and FRS 223
8.2.4 Summary 223
8.3 Extensions to IEEE 802 MAC Protocols for Heterogeneous Multi-hop
Networks 224
8.3.1 Overview 224
8.3.2 Medium Access Control in Heterogeneous Mesh Networks 225
8.3.2.1 802.11 Mesh Network to Serve 802.11 Stations 225
8.3.2.2 802.16 Mesh Network to Serve 802.11 Stations 225
8.3.2.3 New Mesh Network Protocol to Connect 802.16 BSs 225
8.3.3 Interworking Control of 802.16 and 802.11 227
8.3.3.1 Scenario 228
8.3.3.2 Medium Access Control 229
8.3.3.3 BSHC and Legacy 802.11 Stations 232
8.3.4 Performance Evaluation Results 233
8.3.5 Summary 235
8.4 Conclusion 235
9 Coexistence in IEEE 802 Networks 237
Lars Berlemann, Stefan Mangold and Bernhard H. Walke
9.1 Homogeneous Coexistence – Spectrum Sharing 802.11e Networks 238
9.1.1 Coexistence Scenario 238
9.1.2 Overview 239
9.1.3 Single Stage Game 240
9.1.3.1 Quality-of-Service as Utility 241
9.1.3.2 Utility under Competition 243
9.1.4 Behaviors in Single Stage Games 243
9.1.4.1 Cooperation through Predictable Behavior 243
9.1.4.2 Classification of the Opponent’s Behavior 243
9.1.5 Equilibrium Analysis of Single Stage Game 244
9.1.6 Multi Stage Game 245
9.1.7 Strategies in Multi Stage Games 246
9.1.7.1 Static Strategies 246
9.1.7.2 Dynamic (Trigger) Strategies Grim and TitForTat 247
9.1.7.3 RANDOM Strategy 248
9.1.7.4 QoS Support in Multi Stage Games of Competing WLANs 248
9.1.8 Coexistence Among 802.16 Systems 249
9.2 Heterogeneous Coexistence – Unlicensed Operation of 802.16 250
9.2.1 Coexistence Scenario 250
9.2.2 Protecting the Beginning of 802.16 MAC Frame 252
9.2.3 Protecting the 802.16 UL Subframe 253
9.2.4 Shifting the Contention Slots 253
9.3 Summary and Conclusion 253
10 Broadband Cellular Multi-hop Networks 255
Bernhard H. Walke, Ralf Pabst and Daniel C. Schultz
10.1 Definitions 255
10.2 Rationale 256
10.3 Related Work 258
10.4 Relay-based Deployment Concept for Cellular Broadband Networks 259
10.4.1 Relaying Use Cases 260
10.4.1.1 Relay to Increase Coverage Range 260
10.4.1.2 Relay to Increase Cell Capacity 261
10.4.1.3 Relay to Cover Locations Heavily Shadowed from Access Point 261
10.4.1.4 Exploiting Spatial Separation of Subcells in REC 263
10.4.2 Estimation of Subcell Capacity in a Relay Enhanced Cell 264
10.4.2.1 Multi-hop throughput in Cellular Deployment 264
10.4.2.2 Subcell Capacity served by an FRS 264
10.4.2.3 Capacity of Multi-hop Links under Delay Constraint 266
10.5 Conclusions 267
11 Mutual Integration and Cooperation of Radio Access Networks 269
Matthias Siebert and Bernhard H. Walke
11.1 State-of-the-Art Overview 270
11.1.1 ETSI BRAN/3GPP 270
11.1.2 IEEE 272
11.1.2.1 IEEE 802.11u: Interworking with External Networks 272
11.1.2.2 802.21 Media Independent Handoff Working Group 273
11.1.3 IETF 274
11.1.4 ITU-T 274
11.1.5 WWRF 275
11.2 Mobility and Handover 275
11.2.1 General Aspects of Mobility 276
11.2.2 Handover Aspects 277
11.2.2.1 Definition 278
11.2.2.2 Reasons for Handover 278
11.2.2.3 Types of Handover 279
11.2.2.4 Handover Control 282
11.2.2.5 Layer 2 Handover 283
11.2.2.6 Higher Layer Handover 283
11.2.2.7 Horizontal and Vertical Handover 284
11.3 Trigger 286
11.3.1 Definition and Classification 286
11.3.2 Decision Criteria 287
12 Future Mesh Technologies 289
Rui Zhao, Ole Klein, Bernhard H. Walke and Lars Berlemann
12.1 Facts on Medium Access Control 289
12.1.1 State of the Art in Medium Access Control Protocols – A Taxonomy 291
12.1.1.1 HiperLAN 2 (H/2) 291
12.1.1.2 DECT 292
12.1.1.3 GPRS 292
12.1.2 Potentials and Limitations of the State-of-the-art MAC Protocols 292
12.1.2.1 Reservation per Packet 293
12.1.2.2 TDMA in the Short 295
12.1.2.3 TDMA in the Long 296
12.1.3 Key Methods for QoS Supporting Medium Access Control Protocols 296
12.1.3.1 Single-hop Links 296
12.1.3.2 Multi-hop Links 297
12.2 Mesh Networking for 802.11 WLAN 298
12.2.1 Mesh Distributed Coordination Function 299
12.2.1.1 TDMA Frame and Energy Signals 299
12.2.1.2 Prioritized Channel Access 300
12.2.1.3 Link Setup and Traffic Channel Reservation 303
12.2.1.4 Transmission and On-demand-TCH Turnaround 303
12.2.1.5 Packet Multiplexing and Multi-hop Operation 304
12.2.1.6 Coexistence 305
12.2.2 Performance Evaluation Results 305
12.2.2.1 Simulation Tool 305
12.2.2.2 Simulation Results – QoS Performance in Mesh Networks 306
12.3 Conclusion 308
13 Cognitive Radio and Spectrum Sharing 311
Lars Berlemann, Stefan Mangold and Bernhard H. Walke
13.1 From Software-defined Radio to Cognitive Radio 311
13.1.1 Software-defined Radio and Software Radio 311
13.1.2 Composite Radio and Reconfigurable Radio 312
13.1.3 Cognitive Radio 312
13.2 Cognitive Radio Networks 314
13.2.1 Essential Characteristics 315
13.2.2 Spectrum Information Base 316
13.2.3 Similar Approaches and Related Work 317
13.3 Spectrum Sharing and Flexible Spectrum Access 317
13.3.1 Spectrum Trading 317
13.3.2 Underlay and Overlay Spectrum Sharing 319
13.3.2.1 Opportunistic Spectrum Usage 320
13.3.2.2 IEEE 802.11k 321
13.3.3 Vertical and Horizontal Spectrum Sharing 321
13.3.4 Coexistence, Coordination and Cooperation 324
13.4 Coexistence-based Spectrum Sharing 324
13.4.1 Dynamic Frequency Selection 325
13.4.2 Transmit Power Control 325
13.4.3 Ultra-wide Band 325
13.4.4 IEEE 802.16.2 326
13.4.5 IEEE 802.16h 326
13.4.6 IEEE 802.19 326
13.5 Coordination-based Horizontal Spectrum Sharing 326
13.5.1 Common Spectrum Coordination Channel 326
13.5.2 Dynamic Spectrum Allocation 327
13.5.2.1 Brokerage-based Spectrum Sharing 327
13.5.2.2 Inter-operator Spectrum Sharing 328
13.5.3 IEEE 802.11y 328
13.5.4 Spectrum Sharing Games 328
13.6 Coordination-based Vertical Spectrum Sharing 329
13.6.1 Common Control Channel 329
13.6.2 IEEE 802.22 330
13.6.3 Spectrum Pooling 330
13.6.4 Value Orientation 330
13.6.5 Spectrum Load Smoothing 330
13.7 Policies and Etiquette in Spectrum Usage 331
13.7.1 Policy Framework 331
13.7.2 Spectrum Navigation 332
13.7.3 Reasoning-based Spectrum Navigation 332
13.7.3.1 Reasoning 333
13.7.3.2 Knowledge Representation 333
13.7.3.3 Traceability of Decision Making 334
13.7.4 Policy-defined Medium Access Control 334
13.8 Summary and Conclusion 334
14 Conclusions 337
Bernhard H. Walke, Lars Berlemann and Stefan Mangold
Abbreviations 345
References 355
Index 375 |
|