|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
x
哪位有请上传一下吧,或者请发到我的邮箱justin.yqyang@gmail.com,谢谢了
OFDM Baseband Receiver Design for Wireless Communications
Tzi-Dar Chiueh, Pei-Yun Tsai
ISBN: 978-0-470-82234-0
Hardcover
352 pages
December 2007
Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. - Closes the gap between OFDM theory and implementation
- Enables the reader to
- transfer communication receiver concepts into hardware
- design wireless receivers with acceptable implementation loss
- achieve low-power designs
- Contains numerous figures to illustrate techniques
- Features concrete design examples of MC-CDMA systems and cognitive radio applications
- Presents theoretical discussions that focus on concepts rather than mathematical derivation
- Provides a much-needed single source of material from numerous papers
Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.
Preface. About the Authors. Acknowledgements. 1. Introduction. 1.1 Wireless Communication Systems. 1.1.1 Digital Broadcasting Systems. 1.1.2 Mobile Cellular Systems. 1.1.3 Wireless Network Systems. Bibliography. 2. Digital Modulation. 2.1 Single-Carrier Modulation. 2.1.1 Power Spectral Densities of Modulation Signals. 2.1.2 PSK, QAM and ASK. 2.1.3 CPFSK and MSK. 2.1.4 Pulse Shaping and Windowing. 2.2 Multi-Carrier Modulation. 2.2.1 Orthogonal Frequency-Division Multiplexing. 2.2.2 OFDM-Related Issues. 2.2.3 OFDM Transceiver Architecture. 2.2.4 OFDM System Examples. Bibliography. 3. Multiple Access and Error-Correcting Codes. 3.1 Multiple Access. 3.1.1 Frequency-Division Multiple Access (FDMA). 3.1.2 Time-Division Multiple Access (TDMA). 3.1.3 Code-Division Multiple Access (CDMA). 3.1.4 Carrier Sense Multiple Access (CSMA). 3.2 Spread Spectrum and CDMA. 3.2.1 PN Codes. 3.2.2 Direct-Sequence Spread Spectrum. 3.2.3 Frequency-Hopping Spread Spectrum. 3.3 Error-Correcting Codes. 3.3.1 Block Codes. 3.3.2 Reed-Solomon Codes. 3.3.3 Convolutional Codes. 3.3.4 Low-Density Parity-Check Codes. Bibliography. 4. Signal Propagation and Channel Model. 4.1 Introduction. 4.2 Wireless Channel Propagation. 4.2.1 Path Loss and Shadowing. 4.2.2 Multipath Fading. 4.2.3 Multipath Channel Parameters. 4.3 Front-End Electronics Effects. 4.3.1 Carrier Frequency Offset. 4.3.2 Sampling Clock Offset. 4.3.3 Phase Noise. 4.3.4 IQ Imbalance and DC Offset. 4.3.5 Power Amplifier Nonlinearity. 4.4 Channel Model. 4.4.1 Model for Front-End Impairments. 4.4.2 Multipath Rayleigh Fader Model. 4.4.3 Channel Models Used in Standards. Bibliography. 5. Synchronization. 5.1 Introduction. 5.2 Synchronization Issues. 5.2.1 Synchronization Errors. 5.2.2 Effects of Synchronization Errors. 5.2.3 Consideration for Estimation and Compensation. 5.3 Detection/Estimation of Synchronization Errors. 5.3.1 Symbol Timing Detection. 5.3.2 Carrier Frequency Offset Estimation. 5.3.3 Residual CFO and SCO Estimation. 5.3.4 Carrier Phase Estimation. 5.4 Recovery of Synchronization Errors. 5.4.1 Carrier Frequency Offset Compensation. 5.4.2 Sampling Clock Offset Compensation. Bibliography. 6. Channel Estimation and Equalization. 6.1 Introduction. 6.2 Pilot Pattern. 6.3 Pilot-Based Channel Estimation. 6.3.1 Channel Estimation by Block-Type Pilot Symbols. 6.3.2 Channel Estimation by Comb-Type Pilot Symbols. 6.3.3 Channel Estimation by Grid-Type Pilot Symbols. 6.4 Adaptive Channel Estimation. 6.5 Equalization. 6.5.1 One-Tap Equalizer. 6.5.2 Multiple-Tap Equalizer. Bibliography. 7. MIMO Techniques. 7.1 Introduction. 7.2 MIMO Basics. 7.2.1 Capacity. 7.2.2 Diversity. 7.3 MIMO–OFDM. 7.3.1 MIMO Pilot Pattern. 7.3.2 MIMO–OFDM Synchronization. 7.3.3 MIMO–OFDM Channel Estimation. 7.4 MIMO Encoding and Detection. 7.4.1 Space Block Codes. 7.4.2 Spatial Multiplexing. 7.4.3 Spatial De-correlation. Bibliography. 8. From Algorithm to Bit-True Design. 8.1 Design Flow Overview. 8.2 Effect of Additive Impairment Sources. 8.3 Analog-to-Digital Conversion. 8.3.1 ADC Distortions. 8.3.2 Signal Probability Distributions. 8.3.3 Dynamic Range and Precision Setting. 8.4 Finite Precision Effect in Digital Baseband Processing. 8.4.1 Fixed-Point Data Format. 8.4.2 Fixed-Point Error Model. 8.4.3 Finite Precision Effect in FIR Filters. 8.4.4 Finite Precision Effect in IIR Filters. 8.5 Conversion from Floating-Point Design to Bit-True Design. 8.5.1 Metrics for Performance Evaluation. 8.5.2 Interpolative Design Flow. 8.5.3 Simulation-Based Approaches. 8.5.4 Analytical Approaches. Bibliography. 9. Circuit Techniques. 9.1 Introduction. 9.2 FFT. 9.2.1 FFT Algorithms. 9.2.2 Architecture. 9.2.3 Comparison. 9.3 Delay Buffer. 9.3.1 SRAM/Register File-Based Delay Buffer. 9.3.2 Pointer-Based Delay Buffer. 9.3.3 Gated Clock Strategy. 9.3.4 Comparison. 9.4 Circuits for Rectangular-to-Polar Conversion. 9.4.1 Arctangent Function. 9.4.2 Magnitude Function. 9.4.3 Comparison. 9.5 Circuits for Polar-to-Rectangular Conversion. 9.5.1 Trigonometric Approximation. 9.5.2 Polynomial Approximation. 9.5.3 Comparison. Bibliography. 10. System Examples. 10.1 MC-CDMA Downlink Receiver IC. 10.1.1 System Description. 10.1.2 Transmitter and Receiver Design. 10.1.3 Circuit Design. 10.1.4 Experimental Results. 10.2 MIMO–OFDM Cognitive Radio Receiver IC. 10.2.1 System Overview. 10.2.2 Architecture and Circuit Design. 10.2.3 Experimental Results. Bibliography. Index. |
|