在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 5195|回复: 29

[资料] CMOS Current Amplifiers: Speed versus Nonlinearity

[复制链接]
发表于 2015-12-9 10:59:05 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
本帖最后由 hyzhou79 于 2015-12-9 11:01 编辑

CMOS Current Amplifiers_Speed versus Nonlinearity.pdf (2.78 MB, 下载次数: 165 ) 大家参考一下
 楼主| 发表于 2015-12-9 11:00:11 | 显示全部楼层
Contents
1 Introduction to current-mode circuit techniques 1
1.1 Development of integration technologies . . . . . . . . . . . . . . . . 1
1.2 Motivation for current-mode circuit design . . . . . . . . . . . . . . . 2
1.3 Evolution of current-mode building blocks . . . . . . . . . . . . . . . 3
1.4 Adjoint principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Scope of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Contributions by the author . . . . . . . . . . . . . . . . . . . . . . . 8
2 Basic current amplifiers 15
2.1 Current-mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Nonidealities due to the channel length modulation . . . . . . 17
2.1.2 Nonidealities due to the threshold voltage mismatch . . . . . 20
2.1.3 High frequency nonidealities . . . . . . . . . . . . . . . . . 22
Linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Distortion reduction methods . . . . . . . . . . . . . . . . . . 30
Transconductance linearisation . . . . . . . . . . . . . . . . . 30
Nonlinear current reduction . . . . . . . . . . . . . . . . . . 31
Nonlinear current cancellation . . . . . . . . . . . . . . . . . 31
2.1.5 Noise and dynamic range . . . . . . . . . . . . . . . . . . . . 33
2.1.6 Other mirror topologies . . . . . . . . . . . . . . . . . . . . 36
Accurate current-mirror topologies for large signal amplitudes 36
Resistively compensated mirror . . . . . . . . . . . . . . . . 38
2.2 Current buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.4 Alternative topologies . . . . . . . . . . . . . . . . . . . . . 44
vi Contents
3 Open-loop current amplifiers 49
3.1 First generation current-conveyor CCI . . . . . . . . . . . . . . . . . 49
3.1.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Applications of the CCI . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Push-pull CCI topologies . . . . . . . . . . . . . . . . . . . 54
3.1.5 Low voltage CCI topologies . . . . . . . . . . . . . . . . . . 58
3.2 Second generation current-conveyor CCII . . . . . . . . . . . . . . . 59
3.2.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 CCII macromodel . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Applications of the CCII . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Nonlinearity of the class-A CCII . . . . . . . . . . . . . . . . 71
3.2.5 Alternative class-A CCII topologies . . . . . . . . . . . . . . 72
3.2.6 Push-pull CCII topologies . . . . . . . . . . . . . . . . . . . 76
Basic operation of a push-pull CCII+ . . . . . . . . . . . . . 76
Basic operation of a push-pull CCII- . . . . . . . . . . . . . . 78
X-terminal impedance . . . . . . . . . . . . . . . . . . . . . 79
Current gain nonlinearity . . . . . . . . . . . . . . . . . . . . 80
3.3 Third generation current-conveyor CCIII . . . . . . . . . . . . . . . . 84
4 Current-mode feedback amplifiers 89
4.1 Current-feedback operational amplifier . . . . . . . . . . . . . . . . 89
4.1.1 Closed loop bandwidth . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Integrator implementations . . . . . . . . . . . . . . . . . . . 94
4.1.3 Self-compensation of voltage followers . . . . . . . . . . . . 96
4.1.4 Common-mode rejection . . . . . . . . . . . . . . . . . . . . 97
4.1.5 CMOS implementations . . . . . . . . . . . . . . . . . . . . 99
4.2 Operational floating conveyor . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Composite conveyors . . . . . . . . . . . . . . . . . . . . . 103
4.3 Current-mode operational amplifiers . . . . . . . . . . . . . . . . . . 105
4.3.1 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Slew rate and full power bandwidth . . . . . . . . . . . . . . 108
4.3.3 Alternative topologies . . . . . . . . . . . . . . . . . . . . . 109
4.4 High-gain current-conveyor . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.3 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.4 Design example . . . . . . . . . . . . . . . . . . . . . . . . . 119
Contents vii
5 System aspects of current-mode circuits 127
5.1 Input voltage-to-current conversion . . . . . . . . . . . . . . . . . . . 127
5.2 Output current-to-voltage conversion . . . . . . . . . . . . . . . . . . 130
5.3 Differential voltage input structures . . . . . . . . . . . . . . . . . . 133
5.3.1 CMRR enhancement techniques . . . . . . . . . . . . . . . . 134
Common-mode bootstrapping . . . . . . . . . . . . . . . . . 135
Output current subtraction . . . . . . . . . . . . . . . . . . . 135
Composite conveyors . . . . . . . . . . . . . . . . . . . . . . 139
5.4 Differential current input structures . . . . . . . . . . . . . . . . . . . 141
5.5 Single-ended to differential conversion . . . . . . . . . . . . . . . . . 142
5.6 Noise in current-mode circuits . . . . . . . . . . . . . . . . . . . . . 145
5.6.1 Class-A CMOS CCII+ . . . . . . . . . . . . . . . . . . . . . 145
5.6.2 Other low-gain conveyor topologies . . . . . . . . . . . . . . 149
5.6.3 High-gain current-conveyor . . . . . . . . . . . . . . . . . . 149
5.6.4 Other current-mode feedback amplifiers . . . . . . . . . . . . 152
5.6.5 General notes on current amplifier noise . . . . . . . . . . . . 153
6 Current-mode continuous-time filters 157
6.1 Integrator quality factor . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Voltage-mode active-RC integrators . . . . . . . . . . . . . . . . . . 159
6.3 OTA-based integrators . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.1 The effects of process variation and temperature drift . . . . . 162
6.3.2 Transconductance linearity . . . . . . . . . . . . . . . . . . . 164
6.4 Integrators with MOS-resistors . . . . . . . . . . . . . . . . . . . . . 166
6.5 Current-conveyor based filters . . . . . . . . . . . . . . . . . . . . . 167
6.6 Current-mirror based filter . . . . . . . . . . . . . . . . . . . . . . . 171
6.7 High-gain current-conveyor based filters . . . . . . . . . . . . . . . . 176
6.8 Multi-output current integrator with a linearised transconductor . . . . 180
6.8.1 Linearization by drain current difference . . . . . . . . . . . . 181
6.8.2 Linearisation by dynamic biasing . . . . . . . . . . . . . . . 185
6.9 Design case: A 1 MHz current-mode low-pass filter . . . . . . . . . 187
6.9.1 Filter building blocks . . . . . . . . . . . . . . . . . . . . . . 187
The transimpedance driver amplifier . . . . . . . . . . . . . . 188
Multiple-output linearised transconductance element . . . . . 191
Temperature drift compensation of the integrator time constant 191
6.9.2 The first filter realisation . . . . . . . . . . . . . . . . . . . . 194
Integrator Q-enhancement . . . . . . . . . . . . . . . . . . . 196
Experimental results . . . . . . . . . . . . . . . . . . . . . . 199
6.9.3 The second test chip . . . . . . . . . . . . . . . . . . . . . . 202
viii Contents
Alternate driver implementation . . . . . . . . . . . . . . . . 205
Experimental results . . . . . . . . . . . . . . . . . . . . . . 209
6.10 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7 Current-mode logarithmic amplifiers 217
7.1 Diode-feedback logarithmic amplifiers . . . . . . . . . . . . . . . . 218
7.1.1 Voltage-mode operational amplifier based realizations . . . . 218
7.1.2 Design case: High-gain conveyor based logamp . . . . . . . . 220
BiCMOS implementation of a CCII¥ . . . . . . . . . . . . . 221
Logarithmic peak detector implementation . . . . . . . . . . 221
Post processing of the logarithmic output voltage . . . . . . . 226
Final remarks on the design . . . . . . . . . . . . . . . . . . 233
7.2 Pseudologarithmic amplifiers . . . . . . . . . . . . . . . . . . . . . . 234
7.2.1 Limiting CMOS voltage amplifiers . . . . . . . . . . . . . . 235
7.2.2 Limiting CMOS current amplifiers . . . . . . . . . . . . . . . 237
7.2.3 Accuracy of the pseudologarithmic amplifier . . . . . . . . . 239
7.2.4 Amplitude detection in pseudologarithmic amplifiers . . . . . 240
CMOS rectifiers . . . . . . . . . . . . . . . . . . . . . . . . 240
CMOS squarers . . . . . . . . . . . . . . . . . . . . . . . . . 242
CMOS peak detectors . . . . . . . . . . . . . . . . . . . . . 242
7.2.5 Design case: A 2.5 V CMOS pseudologarithmic current amplifier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Limiting amplifier . . . . . . . . . . . . . . . . . . . . . . . 247
Current reference . . . . . . . . . . . . . . . . . . . . . . . . 249
Current peak detector . . . . . . . . . . . . . . . . . . . . . . 251
Experimental results . . . . . . . . . . . . . . . . . . . . . . 251
7.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Current peak detector with enhanced discharging time constant
adjustment . . . . . . . . . . . . . . . . . . . 256
Conclusions 263
A Basic distortion definitions 265
A.1 Harmonic distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
A.2 Intermodulation distortion . . . . . . . . . . . . . . . . . . . . . . . 266
A.3 Distortion in feedback amplifiers . . . . . . . . . . . . . . . . . . . . 267
A.3.1 Distortion in quasi-static feedback amplifiers . . . . . . . . . 267
A.3.2 Distortion in dynamic feedback amplifiers . . . . . . . . . . . 268
Contents ix
B Distortion in push-pull current amplifiers 273
B.1 Class-A operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
B.2 Class-AB operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
C Distortion in CMOS operational amplifiers 279
C.1 Miller-compensated unbuffered operational amplifier . . . . . . . . . 279
C.2 Folded cascode operational transconductance amplifier . . . . . . . . 283
D Distortion in a dual current-mirror integrator 287
D.1 Single-ended integrator . . . . . . . . . . . . . . . . . . . .. . . . . . 287
D.2 Differential integrator . . . . . . . . . . . . . . . . . . . . . . . . . . 291
 楼主| 发表于 2015-12-9 11:02:24 | 显示全部楼层
Contents
1 Introduction to current-mode circuit techniques 1
1.1 Development of integration technologies . . . . . . . . . . . . . . . . 1
1.2 Motivation for current-mode circuit design . . . . . . . . . . . . . . . 2
1.3 Evolution of current-mode building blocks . . . . . . . . . . . . . . . 3
1.4 Adjoint principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Scope of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Contributions by the author . . . . . . . . . . . . . . . . . . . . . . . 8
2 Basic current amplifiers 15
2.1 Current-mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Nonidealities due to the channel length modulation . . . . . . 17
2.1.2 Nonidealities due to the threshold voltage mismatch . . . . . 20
2.1.3 High frequency nonidealities . . . . . . . . . . . . . . . . . 22
Linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Distortion reduction methods . . . . . . . . . . . . . . . . . . 30
Transconductance linearisation . . . . . . . . . . . . . . . . . 30
Nonlinear current reduction . . . . . . . . . . . . . . . . . . 31
Nonlinear current cancellation . . . . . . . . . . . . . . . . . 31
2.1.5 Noise and dynamic range . . . . . . . . . . . . . . . . . . . . 33
2.1.6 Other mirror topologies . . . . . . . . . . . . . . . . . . . . 36
Accurate current-mirror topologies for large signal amplitudes 36
Resistively compensated mirror . . . . . . . . . . . . . . . . 38
2.2 Current buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.4 Alternative topologies . . . . . . . . . . . . . . . . . . . . . 44
vi Contents
3 Open-loop current amplifiers 49
3.1 First generation current-conveyor CCI . . . . . . . . . . . . . . . . . 49
3.1.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Applications of the CCI . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Push-pull CCI topologies . . . . . . . . . . . . . . . . . . . 54
3.1.5 Low voltage CCI topologies . . . . . . . . . . . . . . . . . . 58
3.2 Second generation current-conveyor CCII . . . . . . . . . . . . . . . 59
3.2.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 CCII macromodel . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Applications of the CCII . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Nonlinearity of the class-A CCII . . . . . . . . . . . . . . . . 71
3.2.5 Alternative class-A CCII topologies . . . . . . . . . . . . . . 72
3.2.6 Push-pull CCII topologies . . . . . . . . . . . . . . . . . . . 76
Basic operation of a push-pull CCII+ . . . . . . . . . . . . . 76
Basic operation of a push-pull CCII- . . . . . . . . . . . . . . 78
X-terminal impedance . . . . . . . . . . . . . . . . . . . . . 79
Current gain nonlinearity . . . . . . . . . . . . . . . . . . . . 80
3.3 Third generation current-conveyor CCIII . . . . . . . . . . . . . . . . 84
4 Current-mode feedback amplifiers 89
4.1 Current-feedback operational amplifier . . . . . . . . . . . . . . . . 89
4.1.1 Closed loop bandwidth . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Integrator implementations . . . . . . . . . . . . . . . . . . . 94
4.1.3 Self-compensation of voltage followers . . . . . . . . . . . . 96
4.1.4 Common-mode rejection . . . . . . . . . . . . . . . . . . . . 97
4.1.5 CMOS implementations . . . . . . . . . . . . . . . . . . . . 99
4.2 Operational floating conveyor . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Composite conveyors . . . . . . . . . . . . . . . . . . . . . 103
4.3 Current-mode operational amplifiers . . . . . . . . . . . . . . . . . . 105
4.3.1 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Slew rate and full power bandwidth . . . . . . . . . . . . . . 108
4.3.3 Alternative topologies . . . . . . . . . . . . . . . . . . . . . 109
4.4 High-gain current-conveyor . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.3 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.4 Design example . . . . . . . . . . . . . . . . . . . . . . . . . 119
Contents vii
5 System aspects of current-mode circuits 127
5.1 Input voltage-to-current conversion . . . . . . . . . . . . . . . . . . . 127
5.2 Output current-to-voltage conversion . . . . . . . . . . . . . . . . . . 130
5.3 Differential voltage input structures . . . . . . . . . . . . . . . . . . 133
5.3.1 CMRR enhancement techniques . . . . . . . . . . . . . . . . 134
Common-mode bootstrapping . . . . . . . . . . . . . . . . . 135
Output current subtraction . . . . . . . . . . . . . . . . . . . 135
Composite conveyors . . . . . . . . . . . . . . . . . . . . . . 139
5.4 Differential current input structures . . . . . . . . . . . . . . . . . . . 141
5.5 Single-ended to differential conversion . . . . . . . . . . . . . . . . . 142
5.6 Noise in current-mode circuits . . . . . . . . . . . . . . . . . . . . . 145
5.6.1 Class-A CMOS CCII+ . . . . . . . . . . . . . . . . . . . . . 145
5.6.2 Other low-gain conveyor topologies . . . . . . . . . . . . . . 149
5.6.3 High-gain current-conveyor . . . . . . . . . . . . . . . . . . 149
5.6.4 Other current-mode feedback amplifiers . . . . . . . . . . . . 152
5.6.5 General notes on current amplifier noise . . . . . . . . . . . . 153
6 Current-mode continuous-time filters 157
6.1 Integrator quality factor . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Voltage-mode active-RC integrators . . . . . . . . . . . . . . . . . . 159
6.3 OTA-based integrators . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.1 The effects of process variation and temperature drift . . . . . 162
6.3.2 Transconductance linearity . . . . . . . . . . . . . . . . . . . 164
6.4 Integrators with MOS-resistors . . . . . . . . . . . . . . . . . . . . . 166
6.5 Current-conveyor based filters . . . . . . . . . . . . . . . . . . . . . 167
6.6 Current-mirror based filter . . . . . . . . . . . . . . . . . . . . . . . 171
6.7 High-gain current-conveyor based filters . . . . . . . . . . . . . . . . 176
6.8 Multi-output current integrator with a linearised transconductor . . . . 180
6.8.1 Linearization by drain current difference . . . . . . . . . . . . 181
6.8.2 Linearisation by dynamic biasing . . . . . . . . . . . . . . . 185
6.9 Design case: A 1 MHz current-mode low-pass filter . . . . . . . . . 187
6.9.1 Filter building blocks . . . . . . . . . . . . . . . . . . . . . . 187
The transimpedance driver amplifier . . . . . . . . . . . . . . 188
Multiple-output linearised transconductance element . . . . . 191
Temperature drift compensation of the integrator time constant 191
6.9.2 The first filter realisation . . . . . . . . . . . . . . . . . . . . 194
Integrator Q-enhancement . . . . . . . . . . . . . . . . . . . 196
Experimental results . . . . . . . . . . . . . . . . . . . . . . 199
6.9.3 The second test chip . . . . . . . . . . . . . . . . . . . . . . 202
viii Contents
Alternate driver implementation . . . . . . . . . . . . . . . . 205
Experimental results . . . . . . . . . . . . . . . . . . . . . . 209
6.10 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7 Current-mode logarithmic amplifiers 217
7.1 Diode-feedback logarithmic amplifiers . . . . . . . . . . . . . . . . 218
7.1.1 Voltage-mode operational amplifier based realizations . . . . 218
7.1.2 Design case: High-gain conveyor based logamp . . . . . . . . 220
BiCMOS implementation of a CCII¥ . . . . . . . . . . . . . 221
Logarithmic peak detector implementation . . . . . . . . . . 221
Post processing of the logarithmic output voltage . . . . . . . 226
Final remarks on the design . . . . . . . . . . . . . . . . . . 233
7.2 Pseudologarithmic amplifiers . . . . . . . . . . . . . . . . . . . . . . 234
7.2.1 Limiting CMOS voltage amplifiers . . . . . . . . . . . . . . 235
7.2.2 Limiting CMOS current amplifiers . . . . . . . . . . . . . . . 237
7.2.3 Accuracy of the pseudologarithmic amplifier . . . . . . . . . 239
7.2.4 Amplitude detection in pseudologarithmic amplifiers . . . . . 240
CMOS rectifiers . . . . . . . . . . . . . . . . . . . . . . . . 240
CMOS squarers . . . . . . . . . . . . . . . . . . . . . . . . . 242
CMOS peak detectors . . . . . . . . . . . . . . . . . . . . . 242
7.2.5 Design case: A 2.5 V CMOS pseudologarithmic current amplifier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Limiting amplifier . . . . . . . . . . . . . . . . . . . . . . . 247
Current reference . . . . . . . . . . . . . . . . . . . . . . . . 249
Current peak detector . . . . . . . . . . . . . . . . . . . . . . 251
Experimental results . . . . . . . . . . . . . . . . . . . . . . 251
7.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Current peak detector with enhanced discharging time constant
adjustment . . . . . . . . . . . . . . . . . . . 256
Conclusions 263
A Basic distortion definitions 265
A.1 Harmonic distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
A.2 Intermodulation distortion . . . . . . . . . . . . . . . . . . . . . . . 266
A.3 Distortion in feedback amplifiers . . . . . . . . . . . . . . . . . . . . 267
A.3.1 Distortion in quasi-static feedback amplifiers . . . . . . . . . 267
A.3.2 Distortion in dynamic feedback amplifiers . . . . . . . . . . . 268
Contents ix
B Distortion in push-pull current amplifiers 273
B.1 Class-A operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
B.2 Class-AB operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
C Distortion in CMOS operational amplifiers 279
C.1 Miller-compensated unbuffered operational amplifier . . . . . . . . . 279
C.2 Folded cascode operational transconductance amplifier . . . . . . . . 283
D Distortion in a dual current-mirror integrator 287
D.1 Single-ended integrator . . . . . . . . . . . . . . . . . . . . . . . . . 287
D.2 Differential integrator . . . . . . . . . . . . . . . . . . . . . . . . . . 291
 楼主| 发表于 2015-12-9 11:03:18 | 显示全部楼层
目录贴不上去,需要审核。等等我再上传目录吧。
 楼主| 发表于 2015-12-9 11:05:25 | 显示全部楼层
Contents
1 Introduction to current-mode circuit techniques 1
1.1 Development of integration technologies . . . . . . . . . . . . . . . . 1
1.2 Motivation for current-mode circuit design . . . . . . . . . . . . . . . 2
1.3 Evolution of current-mode building blocks . . . . . . . . . . . . . . . 3
1.4 Adjoint principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Scope of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Contributions by the author . . . . . . . . . . . . . . . . . . . . . . . 8
2 Basic current amplifiers 15
2.1 Current-mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Nonidealities due to the channel length modulation . . . . . . 17
2.1.2 Nonidealities due to the threshold voltage mismatch . . . . . 20
2.1.3 High frequency nonidealities . . . . . . . . . . . . . . . . . 22
Linear effects . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Distortion reduction methods . . . . . . . . . . . . . . . . . . 30
Transconductance linearisation . . . . . . . . . . . . . . . . . 30
Nonlinear current reduction . . . . . . . . . . . . . . . . . . 31
Nonlinear current cancellation . . . . . . . . . . . . . . . . . 31
2.1.5 Noise and dynamic range . . . . . . . . . . . . . . . . . . . . 33
2.1.6 Other mirror topologies . . . . . . . . . . . . . . . . . . . . 36
Accurate current-mirror topologies for large signal amplitudes 36
Resistively compensated mirror . . . . . . . . . . . . . . . . 38
2.2 Current buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.4 Alternative topologies . . . . . . . . . . . . . . . . . . . . . 44
vi Contents
3 Open-loop current amplifiers 49
3.1 First generation current-conveyor CCI . . . . . . . . . . . . . . . . . 49
3.1.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Applications of the CCI . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Push-pull CCI topologies . . . . . . . . . . . . . . . . . . . 54
3.1.5 Low voltage CCI topologies . . . . . . . . . . . . . . . . . . 58
3.2 Second generation current-conveyor CCII . . . . . . . . . . . . . . . 59
3.2.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 CCII macromodel . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Applications of the CCII . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Nonlinearity of the class-A CCII . . . . . . . . . . . . . . . . 71
3.2.5 Alternative class-A CCII topologies . . . . . . . . . . . . . . 72
3.2.6 Push-pull CCII topologies . . . . . . . . . . . . . . . . . . . 76
Basic operation of a push-pull CCII+ . . . . . . . . . . . . . 76
Basic operation of a push-pull CCII- . . . . . . . . . . . . . . 78
X-terminal impedance . . . . . . . . . . . . . . . . . . . . . 79
Current gain nonlinearity . . . . . . . . . . . . . . . . . . . . 80
3.3 Third generation current-conveyor CCIII . . . . . . . . . . . . . . . . 84
4 Current-mode feedback amplifiers 89
4.1 Current-feedback operational amplifier . . . . . . . . . . . . . . . . 89
4.1.1 Closed loop bandwidth . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Integrator implementations . . . . . . . . . . . . . . . . . . . 94
4.1.3 Self-compensation of voltage followers . . . . . . . . . . . . 96
4.1.4 Common-mode rejection . . . . . . . . . . . . . . . . . . . . 97
4.1.5 CMOS implementations . . . . . . . . . . . . . . . . . . . . 99
4.2 Operational floating conveyor . . . . . . . . . . . . . . . . . . . . . 101
4.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2 Composite conveyors . . . . . . . . . . . . . . . . . . . . . 103
4.3 Current-mode operational amplifiers . . . . . . . . . . . . . . . . . . 105
4.3.1 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 Slew rate and full power bandwidth . . . . . . . . . . . . . . 108
4.3.3 Alternative topologies . . . . . . . . . . . . . . . . . . . . . 109
4.4 High-gain current-conveyor . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.1 Linear nonidealities . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.3 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.4 Design example . . . . . . . . . . . . . . . . . . . . . . . . . 119
Contents vii
5 System aspects of current-mode circuits 127
5.1 Input voltage-to-current conversion . . . . . . . . . . . . . . . . . . . 127
5.2 Output current-to-voltage conversion . . . . . . . . . . . . . . . . . . 130
5.3 Differential voltage input structures . . . . . . . . . . . . . . . . . . 133
5.3.1 CMRR enhancement techniques . . . . . . . . . . . . . . . . 134
Common-mode bootstrapping . . . . . . . . . . . . . . . . . 135
Output current subtraction . . . . . . . . . . . . . . . . . . . 135
Composite conveyors . . . . . . . . . . . . . . . . . . . . . . 139
5.4 Differential current input structures . . . . . . . . . . . . . . . . . . . 141
5.5 Single-ended to differential conversion . . . . . . . . . . . . . . . . . 142
5.6 Noise in current-mode circuits . . . . . . . . . . . . . . . . . . . . . 145
5.6.1 Class-A CMOS CCII+ . . . . . . . . . . . . . . . . . . . . . 145
5.6.2 Other low-gain conveyor topologies . . . . . . . . . . . . . . 149
5.6.3 High-gain current-conveyor . . . . . . . . . . . . . . . . . . 149
5.6.4 Other current-mode feedback amplifiers . . . . . . . . . . . . 152
5.6.5 General notes on current amplifier noise . . . . . . . . . . . . 153
6 Current-mode continuous-time filters 157
6.1 Integrator quality factor . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.2 Voltage-mode active-RC integrators . . . . . . . . . . . . . . . . . . 159
6.3 OTA-based integrators . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.1 The effects of process variation and temperature drift . . . . . 162
6.3.2 Transconductance linearity . . . . . . . . . . . . . . . . . . . 164
6.4 Integrators with MOS-resistors . . . . . . . . . . . . . . . . . . . . . 166
6.5 Current-conveyor based filters . . . . . . . . . . . . . . . . . . . . . 167
6.6 Current-mirror based filter . . . . . . . . . . . . . . . . . . . . . . . 171
6.7 High-gain current-conveyor based filters . . . . . . . . . . . . . . . . 176
6.8 Multi-output current integrator with a linearised transconductor . . . . 180
6.8.1 Linearization by drain current difference . . . . . . . . . . . . 181
6.8.2 Linearisation by dynamic biasing . . . . . . . . . . . . . . . 185
6.9 Design case: A 1 MHz current-mode low-pass filter . . . . . . . . . 187
6.9.1 Filter building blocks . . . . . . . . . . . . . . . . . . . . . . 187
The transimpedance driver amplifier . . . . . . . . . . . . . . 188
Multiple-output linearised transconductance element . . . . . 191
Temperature drift compensation of the integrator time constant 191
6.9.2 The first filter realisation . . . . . . . . . . . . . . . . . . . . 194
Integrator Q-enhancement . . . . . . . . . . . . . . . . . . . 196
Experimental results . . . . . . . . . . . . . . . . . . . . . . 199
6.9.3 The second test chip . . . . . . . . . . . . . . . . . . . . . . 202
viii Contents
Alternate driver implementation . . . . . . . . . . . . . . . . 205
Experimental results . . . . . . . . . . . . . . . . . . . . . . 209
6.10 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7 Current-mode logarithmic amplifiers 217
7.1 Diode-feedback logarithmic amplifiers . . . . . . . . . . . . . . . . 218
7.1.1 Voltage-mode operational amplifier based realizations . . . . 218
7.1.2 Design case: High-gain conveyor based logamp . . . . . . . . 220
BiCMOS implementation of a CCII¥ . . . . . . . . . . . . . 221
Logarithmic peak detector implementation . . . . . . . . . . 221
Post processing of the logarithmic output voltage . . . . . . . 226
Final remarks on the design . . . . . . . . . . . . . . . . . . 233
7.2 Pseudologarithmic amplifiers . . . . . . . . . . . . . . . . . . . . . . 234
7.2.1 Limiting CMOS voltage amplifiers . . . . . . . . . . . . . . 235
7.2.2 Limiting CMOS current amplifiers . . . . . . . . . . . . . . . 237
7.2.3 Accuracy of the pseudologarithmic amplifier . . . . . . . . . 239
7.2.4 Amplitude detection in pseudologarithmic amplifiers . . . . . 240
CMOS rectifiers . . . . . . . . . . . . . . . . . . . . . . . . 240
CMOS squarers . . . . . . . . . . . . . . . . . . . . . . . . . 242
CMOS peak detectors . . . . . . . . . . . . . . . . . . . . . 242
7.2.5 Design case: A 2.5 V CMOS pseudologarithmic current amplifier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Limiting amplifier . . . . . . . . . . . . . . . . . . . . . . . 247
Current reference . . . . . . . . . . . . . . . . . . . . . . . . 249
Current peak detector . . . . . . . . . . . . . . . . . . . . . . 251
Experimental results . . . . . . . . . . . . . . . . . . . . . . 251
7.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Current peak detector with enhanced discharging time constant
adjustment . . . . . . . . . . . . . . . . . . . 256
Conclusions 263
A Basic distortion definitions 265
A.1 Harmonic distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
A.2 Intermodulation distortion . . . . . . . . . . . . . . . . . . . . . . . 266
A.3 Distortion in feedback amplifiers . . . . . . . . . . . . . . . . . . . . 267
A.3.1 Distortion in quasi-static feedback amplifiers . . . . . . . . . 267
A.3.2 Distortion in dynamic feedback amplifiers . . . . . . . . . . . 268
Contents ix
B Distortion in push-pull current amplifiers 273
B.1 Class-A operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
B.2 Class-AB operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
C Distortion in CMOS operational amplifiers 279
C.1 Miller-compensated unbuffered operational amplifier . . . . . . . . . 279
C.2 Folded cascode operational transconductance amplifier . . . . . . . . 283
D Distortion in a dual current-mirror integrator 287
D.1 Single-ended integrator . . . . . . . . . . . . . . . . . . . . . . . . . 287
D.2 Differential integrator . . . . . . . . . . . . . . . . . . . . . . . . . . 291
发表于 2015-12-9 19:08:30 | 显示全部楼层
kankan
发表于 2015-12-10 07:54:05 | 显示全部楼层
Great!
发表于 2015-12-10 08:07:36 | 显示全部楼层
谢谢,下载看看。
发表于 2015-12-10 09:22:10 | 显示全部楼层
回复 2# hyzhou79


   好细致。。
发表于 2015-12-10 09:43:18 | 显示全部楼层
回复 1# hyzhou79


    谢谢分享
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条

小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-11-16 12:00 , Processed in 0.023851 second(s), 8 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表