在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
查看: 48171|回复: 329

[完全版]高清晰的《Continuous-Time Active Filter Design 》

[复制链接]
发表于 2008-2-27 22:02:35 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
在论坛下过两个版本,都不完整,所以传个完全的文字版,想打印的考虑一下吧。

02.jpg

Continuous-Time Active Filter Design.rar

4.55 MB, 下载次数: 2598 , 下载积分: 资产 -3 信元, 下载支出 3 信元

 楼主| 发表于 2008-2-27 22:08:37 | 显示全部楼层
Chapter 1 Filter Fundamentals
1.1 Introduction
1.2 Filter Characterization
1.2.1 Lumped
1.2.2 Linear
1.2.3 Continuous-Time and Discrete-Time
1.2.4 Time-Invariant
1.2.5 Finite
1.2.6 Passive and Active
1.3 Types of Filters
1.4 Steps in Filter Design
1.5 Analysis
1.5.1 Nodal Analysis
1.5.2 Network Parameters
1.5.2.1 One-Port Network
1.5.2.2 Two-Port Network
1.5.3 Two-Port Interconnections
1.5.3.1 Series–Series Connection
1.5.3.2 Parallel–Parallel Connection
1.5.3.3 Series Input–Parallel Output Connection
1.5.3.4 Parallel Input–Series Output Connection
1.5.3.5 Cascade Connection
1.5.4 Network Transfer Functions
1.6 Continuous-Time Filter Functions
1.6.1 Pole-Zero Locations
1.6.2 Frequency Response
1.6.3 Transient Response
1.6.3.1 Impulse Response
1.6.3.2 Step Response
1.6.4 Step and Frequency Response
1.7 Stability
1.7.1 Short-Circuit and Open-Circuit Stability
1.7.2 Absolute Stability and Potential Instability
1.8 Passivity Criteria for One- and Two-Port Networks
1.8.1 One-Ports
1.8.2 Two-Ports
1.8.3 Activity
1.8.4 Passivity and Stability
1.9 Reciprocity
1.10 Summary

References and Further Reading
Chapter 2 The Approximation Problem
2.1 Introduction
2.2 Filter Specifications and Permitted Functions
2.2.1 Causality
2.2.2 Rational Functions
2.2.3 Stability
2.3 Formulation of the Approximation Problem
2.4 Approximation of the Ideal Lowpass Filter
2.4.1 Butterworth or Maximally Flat Approximation
2.4.2 Chebyshev or Equiripple Approximation
2.4.3 Inverse Chebyshev Approximation
2.4.4 Papoulis Approximation
2.4.5 Elliptic Function or Cauer Approximation
2.4.6 Selecting the Filter from Its Specifications
2.4.7 Amplitude Equalization
2.5 Filters with Linear Phase: Delays
2.5.1 Bessel-Thomson Delay Approximation
2.5.2 Other Delay Functions
2.5.3 Delay Equalization
2.6 Frequency Transformations
2.6.1 Lowpass-to-Lowpass Transformation
2.6.2 Lowpass-to-Highpass Transformation
2.6.3 Lowpass-to-Bandpass Transformation
2.6.4 Lowpass-to-Bandstop Transformation
2.6.5 Delay Denormalization
2.7 Design Tables for Passive LC Ladder Filters
2.7.1 Transformation of Elements
2.7.1.1 LC Filters
2.7.1.2 Active RC Filters
2.8 Impedance Scaling
2.9 Predistortion
2.10 Summary
Reference

Chapter 3 Active Elements
3.1 Introduction
3.2 Ideal Controlled Sources
3.3 Impedance Transformation (Generalized Impedance Converters and
Inverters)
3.3.1 Generalized Impedance Converters
3.3.1.1 The Ideal Active Transformer
3.3.1.2 The Ideal Negative Impedance Converter
3.3.1.3 The Positive Impedance Converter
3.3.1.4 The Frequency-Dependent Negative Resistor
3.3.2 Generalized Impedance Inverters
3.3.2.1 The Gyrator
3.3.2.2 Negative Impedance Inverter
3.4 Negative Resistance
3.5 Ideal Operational Amplifier
3.5.1 Operations Using the Ideal Opamp
3.5.1.1 Summation of Voltages
3.5.1.2 Integration
3.5.2 Realization of Some Active Elements Using Opamps
3.5.2.1 Realization of Controlled Sources
3.5.2.2 Realization of Negative-Impedance Converters
3.5.2.3 Gyrator Realizations
3.5.2.4 GIC Circuit Using Opamps
3.5.3 Characteristics of IC Opamps
3.5.3.1 Open-Loop Voltage Gain of Practical Opamps
3.5.3.2 Input and Output Impedances
3.5.3.3 Input Offset Voltage VIO
3.5.3.4 Input Offset Current IIO
3.5.3.5 Input Voltage Range VI
3.5.3.6 Power Supply Sensitivity ΔVIO/ΔVGG
3.5.3.7 Slew Rate SR
3.5.3.8 Short-Circuit Output Current
3.5.3.9 Maximum Peak-to-Peak Output Voltage Swing Vopp
3.5.3.10 Input Capacitance Ci
3.5.3.11 Common-Mode Rejection Ratio CMRR
3.5.3.12 Total Power Dissipation
3.5.3.13 Rise Time tr
3.5.3.14 Overshoot
3.5.4 Effect of the Single-Pole Compensation on the Finite Voltage Gain Controlled Sources
3.6 The Ideal Operational Transconductance Amplifier (OTA)
3.6.1 Voltage Amplification
3.6.2 A Voltage-Variable Resistor (VVR)
3.6.3 Voltage Summation
3.6.4 Integration
3.6.5 Gyrator Realization
3.6.6 Practical OTAs
3.6.7 Current Conveyor
3.7 Summary
References

Chapter 4 Realization of First- and Second-Order Functions Using Opamps
4.1 Introduction
4.2 Realization of First-Order Functions
4.2.1 Lowpass Circuits
4.2.2 Highpass Circuits
4.2.3 Allpass Circuits
4.3 The General Second-Order Filter Function
4.4 Sensitivity of Second-Order Filters
4.5 Realization of Biquadratic Functions Using SABs
4.5.1 Classification of SABs
4.5.2 A Lowpass SAB
4.5.3 A Highpass SAB
4.5.4 A Bandpass SAB
4.5.5 Lowpass- and Highpass-Notch Biquads
4.5.6 Lowpass Notch (R6=∞)
4.5.7 Highpass Notch (R7=∞)
4.5.8 An Allpass SAB
4.6 Realization of a Quadratic with a Positive Real Zero
4.7 Biquads Obtained Using the Twin-T RC Network
4.8 Two-Opamp Biquads
4.8.1 Biquads by Inductance Simulation
4.8.2 Two-Opamp Allpass Biquads
4.8.3 Selectivity Enhancement
4.9 Three-Opamp Biquads
4.9.1 The Tow-Thomas [25–27] Three-Opamp Biquad
4.9.2 Excess Phase and Its Compensation in Three-Opamp Biquads
4.9.3 The Åkerberg-Mossberg Three-Opamp Biquad
4.10 Summary
References

Chapter 5 Realization of High-Order Functions
5.1 Introduction
5.2 Selection Criteria for High-Order Function Realizations
5.3 Multiparameter Sensitivity
5.4 High-Order Function Realization Methods
5.5 Cascade Connection of Second-Order Sections
5.5.1 Pole-Zero Pairing
5.5.2 Cascade Sequence
5.5.3 Gain Distribution
5.6 Multiple-Loop Feedback Filters
5.6.1 The Shifted-Companion-Form (SCF) Design Method
5.6.2 Follow-the-Leader Feedback Design (FLF)
5.7 Cascade of Biquartics
5.7.1 The BR Section
5.7.2 Effect of ηon and
5.7.3 Cascading Biquartic Sections
5.7.4 Realization of Biquartic Sections
5.7.4.1 Design Example
5.7.5 Sensitivity of CBR Filters
5.8 Summary
References
Further Reading

Chapter 6 Simulation of LC Ladder Filters Using Opamps
6.1 Introduction
6.2 Resistively-Terminated Lossless LC Ladder Filters
6.3 Methods of LC Ladder Simulation
6.4 The Gyrator
6.4.1 Gyrator Imperfections
6.4.2 Use of Gyrators in Filter Synthesis
6.5 Generalized Impedance Converter, GIC
6.5.1 Use of GICs in Filter Synthesis
6.6 FDNRs: Complex Impedance Scaling
6.7 Functional Simulation
6.7.1 Example
6.7.2 Bandpass Filters
6.7.3 Dynamic Range of LF Filters
6.8 Summary
References

Chapter 7 Wave Active Filters
7.1 Introduction
7.2 Wave Active Filters
7.3 Wave Active Equivalents (WAEs)
7.3.1 Wave Active Equivalent of a Series-Arm Impedance
7.3.2 Wave Active Equivalent of a Shunt-Arm Admittance
7.3.3 WAEs for Equal Port Normalization Resistances
7.3.4 Wave Active Equivalent of the Signal Source
7.3.5 Wave Active Equivalent of the Terminating Resistance
7.3.6 WAEs of Shunt-Arm Admittances
7.3.7 Interconnection Rules
7.3.8 WAEs of Tuned Circuits
7.3.9 WA Simulation Example
7.3.10 Comments on the Wave Active Filter Approach
7.4 Economical Wave Active Filters
7.5 Sensitivity of WAFs
7.6 Operation of WAFs at Higher Frequencies
7.7 Complementary Transfer Functions
7.8 Wave Simulation of Inductance
7.9 Linear Transformation Active Filters (LTA Filters)
7.9.1 Interconnection Rule
7.9.2 General Remarks on the Method
7.10 Summary
References

Chapter 8 Single Operational Transconductance Amplifier (OTA) Filters
8.1 Introduction
8.2 Single OTA Filters Derived from Three-Admittance Model
8.2.1 First-Order Filter Structures
8.2.1.1 First-Order Filters with One or Two Passive Components
8.2.1.2 First-Order Filters with Three Passive Components
8.2.2 Lowpass Second-Order Filter with Three Passive Components
8.2.3 Lowpass Second-Order Filters with Four Passive Components
8.2.4 Bandpass Second-Order Filters with Four Passive Components
8.3 Second-Order Filters Derived from Four-Admittance Model
8.3.1 Filter Structures and Design
8.3.1.1 Lowpass Filter
8.3.1.2 Bandpass Filter
8.3.1.3 Other Considerations on Structure Generation
8.3.2 Second-Order Filters with the OTA Transposed
8.3.2.1 Highpass Filter
8.3.2.2 Lowpass Filter
8.3.2.3 Bandpass Filter
8.4 Tunability of Active Filters Using Single OTA
8.5 OTA Nonideality Effects
8.5.1 Direct Analysis Using Practical OTA Macro-Model
8.5.2 Simple Formula Method
8.5.3 Reduction and Elimination of Parasitic Effects
8.6 OTA-C Filters Derived from Single OTA Filters
8.6.1 Simulated OTA Resistors and OTA-C Filters
8.6.2 Design Considerations of OY Structures
8.7 Second-Ordre Filters Derived from Five-Admittance Model
8.7.1 Highpass Filter
8.7.2 Bandpass Filter
8.7.3 Lowpass Filter
8.7.4 Comments and Comparison
8.8 Summary
References

Chapter 9 Two Integrator Loop OTA-C Filters
9.1 Introduction
9.2 OTA-C Building Blocks and First-Order OTA-C Filters
9.3 Two Integrator Loop Configurations and Performance
9.3.1 Configurations
9.3.2 Pole Equations
9.3.3 Design
9.3.4 Sensitivity
9.3.5 Tuning
9.3.6 Biquadratic Specifications
9.4 OTA-C Realizations of Distributed-Feedback (DF) Configuration
9.4.1 DF OTA-C Circuit and Equations
9.4.2 Filter Functions
9.4.3 Design Examples
9.4.4 DF OTA-C Realizations with Special Feedback Coefficients .
9.5 OTA-C Filters Based on Summed-Feedback (SF) Configuration
9.5.1 SF OTA-C Realization with Arbitrary k12 and k11
9.5.1.1 Design Example of KHN OTA-C Biquad
9.5.2 SF OTA-C Realization with k12=k11=k
9.6 Biquadratic OTA-C Filters Using Lossy Integrators
9.6.1 Tow-Thomas OTA-C Structure
9.6.2 Feedback Lossy Integrator Biquad
9.7 Comparison of Basic OTA-C Filter Structures
9.7.1 Multifunctionality and Number of OTA
9.7.2 Sensitivity
9.7.3 Tunability
9.8 Versatile Filter Functions Based on Node Current Injection
9.8.1 DF Structures with Node Current Injection
9.8.2 SF Structures with Node Current Injection
9.9 Universal Biquads Using Output Summation Approach
9.9.1 DF-Type Universal Biquads
9.9.2 SF-Type Universal Biquads
9.9.3 Universal Biquads Based on Node Current Injection and Output Summation
9.9.4 Comments on Universal Biquads
9.10 Universal Biquads Based on Canonical and TT Circuits
9.11 Effects and Compensation of OTA Nonidealities
9.11.1 General Model and Equations
9.11.2 Finite Impedance Effects and Compensation
9.11.3 Finite Bandwidth Effects and Compensation
9.11.4 Selection of OTA-C Filter Structures
9.11.5 Selection of Input and Output Methods
9.11.6 Dynamic Range Problem
9.12 Summary
References

Chapter 10 OTA-C Filters Based on Ladder Simulation
10.1 Introduction
10.2 Component Substitution Method
10.2.1 Direct Inductor Substitution
10.2.1.1 OTA-C Inductors
10.2.1.2 Tolerance Sensitivity of Filter Function
10.2.1.3 Parasitic Effects on Simulated Inductor
10.2.1.4 Parasitic Effects on Filter Function
10.2.2 Application Examples of Inductor Substitution
10.2.2.1 OTA-C Biquad Derived from RLC Resonator Circuit
10.2.2.2 A Lowpass OTA-C Filter
10.2.3 Bruton Transformation and FDNR Simulation
10.3 Admittance/Impedance Simulation
10.3.1 General Description of the Method
10.3.2 Application Examples and Comparison
10.3.3 Parial Floating Admittance Concept
10.4 Signal Flow Simulation and Leapfrog Structures
10.4.1 Leapfrog Simulation Structures of General Ladder
10.4.2 OTA-C Lowpass LF Filters
10.4.2.1 Example
10.4.3 OTA-C Bandpass LF Filter Design
10.4.4 Partial Floating Admittance Block Diagram and OTA-C Realization
10.4.5 Alternative Leapfrog Structures and OTA-C Realizations
10.5 Equivalence of Admittance and Signal Simulation Methods
10.6 OTA-C Simulation of LC Ladders Using Matrix Methods
10.7 Coupled Biquad OTA Structures
10.8 Some General Practical Design Considerations
10.8.1 Selection of Capacitors and OTAs
10.8.2 Tolerance Sensitivity and Parasitic Effects
10.8.3 OTA Finite Impedances and Frequency-Dependent Transconductance
10.9 Summary
References

Chapter 11 Multiple Integrator Loop Feedback OTA-C Filters
11.1 Introduction
11.2 General Design Theory of All-Pole Structures
11.2.1 Multiple Loop Feedback OTA-C Model
11.2.2 System Equations and Transfer Function
11.2.3 Feedback Coefficient Matrix and Systematic Structure Generation
11.2.4 Filter Synthesis Procedure Based on Coefficient Matching
11.3 Structure Generation and Design of All-Pole Filters
11.3.1 First- and Second-Order Filters
11.3.2 Third-Order Filters
11.3.3 Fourth-Order Filters
11.3.4 Design Examples of Fourth-Order Filters
11.3.5 General nth-Order Architectures
11.3.5.1 General IFLF Configuration
11.3.5.2 General LF Configureation
11.3.6 Other Types of Realization
11.4 Generation and Synthesis of Transmission Zeros
11.4.1 Output Summation of OTA Network
11.4.2 Input Distribution of OTA Network
11.4.3 Universal and Special Third-Order OTA-C Filters
11.4.3.1 IFLF and Output Summation Structure in Fig. 11.10(a)
11.4.3.2 IFLF and Input Distribution Structure in Fig. 11.10(b)
11.4.3.3 LF and Output Summation Structure in Fig. 11.10(c)
11.4.3.4 LF and Input Distribution Structure in Fig. 11.10(d)
11.4.3.5 Realization of Special Characteristics
11.4.3.6 Design of Elliptic Filters
11.4.4 General nth-Order OTA-C Filters
11.4.4.1 Universal IFLF Architectures
11.4.4.2 Universal LF Architectures
11.5 General Formulation of Sensitivity Analysis
11.5.1 General Sensitivity Relations
11.5.2 Sensitivities of Different Filter Structures
11.6 Determination of Maximum Signal Magnitude
11.7 Effects of OTA Frequency Response Nonidealities
11.8 Summary
References

Chapter 12 Current-Mode Filters and Other Architectures
12.1 Introduction
12.2 Current-Mode Filters Based on Single DO-OTA
12.2.1 General Model and Filter Architecture Generation
12.2.1.1 First-Order Filter Structures
12.2.1.2 Second-Order Filter Architectures
12.2.2 Passive Resistor and Active Resistor
12.2.3 Design of Second-Order Filters
12.2.4 Effects of DO-OTA Nonidealities
12.3 Current-Mode Two Integrator Loop DO-OTA-C Filters
12.3.1 Basic Building Blocks and First-Order Filters
12.3.2 Current-Mode DO-OTA-C Configurations with Arbitrary kij
12.3.3 Current-Mode DO-OTA-C Biquadratic Architectures with k12=kij
12.3.4 Current-Mode DO-OTA-C Biquadratic Architectures with k12= 1
12.3.5 DO-OTA Nonideality Effects
12.3.6 Universal Current-Mode DO-OTA-C Filters
12.4 Current-Mode DO-OTA-C Ladder Simulation Filters
12.4.1 Leapfrog Simulation Structures of General Ladder
12.4.2 Current-Mode DO-OTA-C Lowpass LF Filters
12.4.3 Current-Mode DO-OTA-C Bandpass LF Filter Design
12.4.4 Alternative Current-Mode Leapfrog DO-OTA-C Structure
12.5 Current-Mode Multiple Loop Feedback DO-OTA-C Filters
12.5.1 Design of All-Pole Filters
12.5.2 Realization of Transmission Zeros
12.5.2.1 Multiple Loop Feedback with Input Distribution
12.5.2.2 Multiple Loop Feedback with Output Summation
12.5.2.3 Filter Structures and Design Formulas
12.6 Other Continuous-Time Filter Structures
12.6.1 Balanced Opamp-RC and OTA-C Structures
12.6.2 MOSFET-C Filters
12.6.3 OTA-C-Opamp Filter Design
12.6.4 Active Filters Using Current Conveyors
12.6.5 Log-Domain, Current Amplifier, and Integrated-RLC Filters
12.7 Summary
References

Appendix A A Sample of Filter Functions
发表于 2008-2-29 21:42:38 | 显示全部楼层

多谢!!!

多谢好人!!!
发表于 2008-2-29 22:04:25 | 显示全部楼层
xiexie
发表于 2008-3-9 19:14:33 | 显示全部楼层
不支持对不起楼主了
发表于 2008-3-11 19:13:22 | 显示全部楼层
xie xie
发表于 2008-3-11 19:15:30 | 显示全部楼层
对好人我们只能赞到无语
发表于 2008-3-11 22:52:13 | 显示全部楼层
thank you
good luck
发表于 2008-3-12 12:19:53 | 显示全部楼层
thank you
发表于 2008-3-25 11:12:54 | 显示全部楼层
好人啊,谢谢!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /1 下一条

小黑屋| 手机版| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-11-16 20:33 , Processed in 0.025097 second(s), 8 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表