在线咨询
eetop公众号 创芯大讲堂 创芯人才网
切换到宽版

EETOP 创芯网论坛 (原名:电子顶级开发网)

手机号码,快捷登录

手机号码,快捷登录

找回密码

  登录   注册  

快捷导航
搜帖子
EETOP诚邀模拟IC相关培训讲师 创芯人才网--重磅上线啦!
查看: 5184|回复: 33

[资料] 【 Artech House】Practical Microwave Circuits、Solid-State_Microwa

[复制链接]
发表于 2017-6-29 22:54:36 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?注册

x
Practical Microwave Circuits.pdf (8.95 MB, 下载次数: 240 )
Stephen A. Maas
Contents
Preface xvii
Chapter 1 Transmission Lines 1
1.1 Transmission Lines 1
1.1.1 Fundamental Relations 1
1.1.2 Characteristic Impedance 4
1.1.3 Lossy Transmission Lines 5
1.1.4 Conditions at the Ends of Transmission Lines 6
1.1.4.1 Reflection Coefficient 6
1.1.4.2 Return Loss and VSWR 8
1.1.4.3 Transmission Coefficient 9
1.1.4.4 Equivalent Circuits 10
1.1.5 Matrix Relationships 11
1.1.6 Input Impedance and Power Transfer 13
1.2 Practical Considerations 14
1.2.1 Transmission Line Types 15
1.2.1.1 Parallel-Wire Line 15
1.2.1.2 Coaxial Line 15
1.2.1.3 Planar Transmission Structures 16
1.2.2 Properties 17 Practical Microwave Circuits viii
1.2.2.1 TEM Modes, Group Velocity,
and the Quasi-TEM
Approximation 17
1.2.2.2 Quasistatic Analysis 20
1.2.2.3 Loss 20
1.2.2.4 Nonhomogeneous Lines 22
1.3 Application: RC Transmission Line 23
1.4 Application: Multisection Quarter-Wave
Transformer 24
Chapter 2 Coupled Transmission Lines and Modal Analysis 31
2.1 Even- and Odd-Mode Analysis 31
2.1.1 Even and Odd Modes 31
2.1.2 Even- and Odd-Mode Characteristics 33
2.1.3 Coupled-Line Analysis 35
2.1.4 Application: Coupled-Line Directional
Coupler 36
2.1.5 Effect of Unequal Modal Phase Velocities 40
2.2 General, Multiple Coupled Lines 41
2.2.1 R, L, G, and C Matrices 41
2.2.2 Transmission Line Equations 43
2.2.3 Matrices 46
2.2.4 Application: Lange Coupler 49
2.3 Balun Design 51
2.3.1 Balun Properties 52
2.3.2 Application: Parallel-Strip Balun 54
2.3.3 Application: Marchand Balun 57
2.3.4 Application: Half-Wave Balun 62
Chapter 3 Scattering Parameters 67
3.1 Circuit Description in Terms of Wave Quantities 68
3.1.1 Voltage Waves and Power Waves 68
3.1.2 The Scattering Matrix 70
3.1.3 S-Parameter Renormalization 73Contents ix
3.1.4 Circuit Interconnections 73
3.2 Properties of the Scattering Matrix 77
3.2.1 General Properties 77
3.2.2 Two-Ports 79
3.2.3 Three-Ports 80
3.2.4 Application: Baluns 83
3.2.5 Four-Ports 84
3.3 S Parameter Analysis of Two-Ports 88
3.3.1 Gain and Reflection Coefficients 88
3.3.1.1 Gain 89
3.3.1.2 Input and Output Reflection
Coefficients 92
3.3.1.3 Determining S Parameters from
Nodal Analysis 93
3.3.2 Two-Port Gain Definitions 95
3.4 Stability 96
3.4.1 Two-Port Stability 96
3.4.2 Port Terminations and External Stability 97
3.4.3 General Linear Circuit Stability 101
3.4.3.1 A More General View of
External Stability 101
3.4.3.2 Internal Stability 103
3.4.3.3 Interface Stability 105
3.5 Transfer Scattering Matrix 108
Chapter 4 Matching Circuits 113
4.1 Fundamentals 114
4.1.1 Power Transfer and Port Impedances 114
4.1.2 Impedance Normalization 115
4.2 Narrowband Matching 115
4.2.1 L-Section Matching Circuits Using LC
Elements or Stubs 116 Practical Microwave Circuits x
4.2.2 Realization of L and C Elements with
Transmission Lines 118
4.2.3 Series-Line Matching 119
4.2.4 Quarter-Wave Transformer Matching 119
4.2.5 Simple Broadbanding Technique 121
4.3 Transmission-Line Transformers 122
4.3.1 Wirewound Impedance Transformer 122
4.3.2 Toroidal Balun 123
4.3.3 Transmission Line “Autotransformer” 126
4.4 Classical Synthesis 131
4.4.1 Matching Limitations 131
4.4.2 Prototype Networks 132
4.4.2.1 Series RL or Shunt RC 132
4.4.2.2 Shunt RL or Series RC Loads 134
4.4.3 Normalization and Frequency Scaling 134
4.4.4 Load Scaling and the Decrement 135
4.4.5 Examples 139
4.4.5.1 Low-Pass Matching Circuit 139
4.4.5.2 Bandpass Matching Circuit 142
4.4.6 Impedance Transformations 144
4.5 Distributed Networks 147
4.5.1 Simple Resonator Equivalents Based on
Slope Parameters 148
4.5.2 Converting Series Elements to Shunt 149
4.5.2.1 Example: Conversion of a Series
Resonator to Shunt 152
4.5.2.2 Impedance and Admittance
Inverters 152
4.5.2.3 Example: Use of Lumped-
Element Inverters 156
4.5.3 Richards’ Transformation 158
4.5.3.1 Example: Low-Pass Matching
Circuit 159Contents xi
4.6 Modern Methods 159
4.6.1 Direct Optimization 160
4.6.2 Real Frequency Method 162
4.6.3 Synthesis and Parasitic Absorption 164
Chapter 5 Circuit Analysis 167
5.1 Network Graph Analysis 167
5.1.1 General Network Graphs 168
5.1.2 Example: A Terminated Two-Port 173
5.1.3 S Parameters and Mason’s Rule 176
5.1.4 S-Parameter Examples 178
5.1.4.1 Input Reflection Coefficient 178
5.1.4.2 Transducer Gain 181
5.1.4.3 Interface Mismatch in
Cascaded Two-Ports 182
5.2 Nodal Analysis 185
5.2.1 Indefinite Admittance Matrix 185
5.2.1.1 Matrix Stamps 186
5.2.1.2 Voltage-Controlled Current
Source 187
5.2.1.3 Grounded Elements 188
5.2.2 Matrix Reduction 190
Chapter 6 Circuit and Element Modeling 195
6.1 Circuit Characterization 195
6.1.1 Wave and I/V Characterization 196
6.1.2 Characterization of Discrete Components 196
6.1.2.1 Measurement and Application 196
6.1.2.2 Lumped-Element Model 199
6.1.3 EM-Simulated Circuit Elements 201
6.1.3.1 EM Simulators 201
6.1.3.2 De-Embedding 202
6.1.3.3 EM Database Elements 204 Practical Microwave Circuits xii
6.1.3.4 Use of EM Results in Nonlinear
Analysis 205
6.1.4 Correction of Reference-Plane Locations 207
6.1.5 De-Embedding by Negative Images 209
6.2 Some Useful Nonexistent Components 211
6.2.1 Transformer 211
6.2.2 Gyrator 215
6.2.2.1 Transformers Modeled by
Gyrators 216
6.2.2.2 Circulator Model 219
6.2.2.3 Current Sensor 219
6.2.2.4 Controlled Sources 220
6.3 Some Problematical Circuit Elements 220
6.3.1 Bond Wires 222
6.3.2 Bond Wires to Chips 224
6.3.3 Cell Interconnections in Large Devices 224
6.3.4 Housing Effects 226
6.3.5 Transmission-Line Loss 227
6.3.6 Thick Metal in EM Simulations 228
6.3.7 Poorly Modeled Circuit Elements 228
Chapter 7 Active Two-Ports 231
7.1 Amplifier Theory 231
7.1.1 Summary of Previous Results 231
7.1.1.1 Gain 231
7.1.1.2 Input and Output Reflection
Coefficients 233
7.1.1.3 External Stability 233
7.1.2 Gain Circles 235
7.1.3 Simultaneous Conjugate Match 236
7.1.4 Figures of Merit for Solid-State Devices 238
7.1.4.1 Maximum Available Gain and
Maximum Stable Gain 238
7.1.4.2 fmax and ft
238Contents xiii
7.1.5 Power Considerations 241
7.1.6 Distortion 244
7.2 Noise 247
7.2.1 Noise Temperature and Noise Figure 247
7.2.1.1 Noise Temperature 248
7.2.1.2 Noise Figure 250
7.2.2 Noise Figure Optimization 250
7.2.3 Noise Figure of an Attenuator 252
7.2.4 Cascaded Stages 253
7.3 Amplifier Design 254
7.3.1 Device Bias in Amplifier Design 254
7.3.1.1 Bipolar Devices 254
7.3.1.2 FETs 255
7.3.2 Narrowband Amplifier Design 256
7.3.2.1 Matching Approach 256
7.3.2.2 Example: Low-Noise Amplifier 257
7.3.3 Broadband Design Using Negative-Image
Models 260
7.3.3.1 Negative-Image Modeling 261
7.3.3.2 Example: LNA Design Using
Negative-Image Modelling 263
7.3.4 Small-Signal Power Amplifier Design 268
7.3.4.1 Power Amplifier Design 268
7.3.4.2 Example: Small-Signal, Class-A
Amplifier 270
7.3.5 Amplifier Design for Dynamic Range 273
7.3.5.1 Dynamic Range in FET
Amplifiers 273
7.3.5.2 Wide Dynamic Range Bipolar
Transistor Amplifiers 275
7.3.5.3 Example: Wide Dynamic Range
FET Amplifier 276 Practical Microwave Circuits xiv
Chapter 8 Balanced and Quadrature-Coupled Circuits 281
8.1 90- and 180-Degree Hybrid Junctions 281
8.1.1 Characteristics of Hybrids 281
8.1.2 Quadrature Hybrids 283
8.1.2.1 Coupled-Line Hybrid 283
8.1.2.2 Branch-Line Hybrid 284
8.1.2.3 Lumped-Element Quadrature
Hybrids 284
8.1.3 180-Degree Hybrids 289
8.1.3.1 Rat-Race Hybrid 289
8.1.3.2 Rat-Race Hybrid with Unequal
Power Division 290
8.1.3.3 Broadband Rat-Race Hybrid 292
8.1.3.4 Marchand Hybrid 293
8.1.3.5 Lumped-Element 180-Degree
Hybrid 293
8.1.4 Practical Considerations 295
8.2 Quadrature-Coupled Circuits 296
8.2.1 The Terminated Quadrature Hybrid 297
8.2.2 Quadrature-Coupled Amplifier 301
8.2.2.1 Gain and Port Reflection
Coefficients 301
8.2.2.2 Large-Signal Performance 304
8.2.2.3 Noise 305
8.3 Balanced Amplifiers Using Baluns and 180-Degree
Hybrids 310
8.3.1 The Terminated Balun 310
8.3.1.1 Input Reflection Coefficient 310
8.3.1.2 Even- and Odd-Mode Port
Reflection Coefficients 313
8.3.2 Balun-Coupled Balanced Circuits 316
8.3.3 Even Harmonics and Even-Order
Distortion 316Contents xv
8.3.4 Hybrid-Coupled Balanced Circuits 318
About the Author 321
Index
Solid-State_Microwa(High_Power Amplifiers)[Franco_Sechi,_Marina_Bujatti].pdf (5.79 MB, 下载次数: 110 )
Franco Sechi
Marina Bujatti
Contents
Preface  xi
  CHAPter 1
Introduction  1
1.1  Scope of This Book  1
1.1.1  Future Developments  3
References  3
  CHAPter 2  
High-Power Amplifiers  5
2.1  Applications and Specifications  5
2.2  Active Devices  11
References  14
  CHAPter 3  
Physics of Active Devices  17
3.1  Introduction  17
3.2  Basic Concepts of Solid-State Physics  17
3.3  Charge Transport in Semiconductors  25
3.4  Junctions and Barriers  27
3.5  FETs and MESFETs  37
3.6  Heterojunction Transistors  45
References  53
  CHAPter 4  
Device Characterization and Modeling  57
4.1  Introduction  57
4.2  Small-Signal Characterization and Models  57
4.2.1  MESFET and HEMT Small-Signal Model  58
4.2.2  HBT Small-Signal Model  59
4.3  Large-Signal Characterization  60
4.3.1  Load Pull  60
4.3.2  Large-Signal Parameters: AM/AM and AM/PM  66
4.3.3  S-Parameters Versus Bias  67
4.4  Large-Signal Models  69
4.4.1  MESFET and HEMT Large-Signal Model  69
4.4.2  HBT Large-Signal Model  71
References  74
vii  CHAPter 5  
Phase Noise  77
5.1  Introduction  77
5.2  Noise in Semiconductors  78
5.3  Noise in Active Devices  81
5.4  Phase Noise  87
5.5  Phase Noise in Amplifiers  89
References  96
  CHAPter 6  
Technologies for Microwave Power Amplifiers  99
6.1  Introduction  99
6.2  Waveguide Components  99
6.3  Microwave Integrated Circuits (MICs)  100
6.3.1  Microwave Printed Circuits  101
6.3.2  Hybrid Circuits  102
6.3.3  Miniature Hybrid or Semimonolithic Ceramic Circuits  105
6.3.4  Monolithic Circuits  108
References  112
  CHAPter 7  
Power Combiners and Dividers  115
7.1  Introduction  115
7.2  Balanced Stages and Quadrature Couplers  116
7.2.1  Interdigitated Couplers  117
7.2.2  Branch-Line Couplers  122
7.2.3  Wilkinson Couplers, In-Phase and Quadrature  125
7.2.4  Comparison of Three Types of Microstrip Quadrature Couplers  129
7.3  180° Couplers  130
7.4  Lumped-Element l  /4 Transformers  131
7.5  Radial Combiners  132
7.5.1  Microstrip Lines  132
7.5.2  Radial Waveguides  134
7.5.3  Conical Waveguides  140
7.6  Coupler Arrays  142
References  144
  CHAPter 8  
General Power-Amplifier Design  149
8.1  Introduction  149
8.2  Load-Pull Design  149
8.3  Broadband Matching Networks  150
8.4  Bode and Fano—Theoretical Limitations on Matching  155
8.5  Bandwidth vs. Power  158
8.6  Load-Line Design  163
viii  Contents8.7  Large-Signal Simulation Design: Harmonic Balance  171
8.8  Potential Instabilities  173
8.8.1  Low-Level Oscillations: Rollet’s k Factor  173
8.8.2  Internal Oscillations  175
8.8.3  Parametric Oscillations  176
8.8.4  Bias Oscillations  178
References  179
  CHAPter 9  
High-Efficiency Amplifiers  181
9.1  Introduction  181
9.2  Class A: Output Power and Efficiency Versus Load Line  181
9.3  Class AB: Peak Voltage Versus Conduction Angle and Load Line  184
9.4  Overdriven Amplifiers  192
9.4.1  Class B: Optimal Efficiency and Class F  192
9.4.2  Class B: Optimal Power  197
9.4.3  Class A: Optimal Loading  200
9.4.4  Class A: Optimal Power and Efficiency  203
9.5  Class E  205
9.6  Real Devices and Circuits  213
References  214
  CHAPter 10  
Linear Power Amplifiers  217
10.1  Introduction  217
10.2  Linearity  217
10.2.1  Amplitude Distortion: Two-Tone IMD  218
10.2.2  Real IMD Curves  222
10.2.3  Phase Distortion: Two-Tone IMD  226
10.2.4  Composite Amplitude and Phase Distortion  229
10.2.5  Spectrum Asymmetry and Memory Effects  230
10.3  Design Technique: Intermodulation and Power Contours  232
10.4  Test Set  236
10.5  A Simple Quadrature Model  237
10.6  Behavioral Models  240
10.6.1  Power and Taylor Series  241
10.6.2  Volterra Series  242
10.6.3  Other Miscellaneous Models  243
10.7  Linearization Techniques  243
10.7.1  Predistortion  243
10.7.2  Feedforward Technique  250
10.7.3  Envelope Feedback  252
10.8  Channel Interference: ACPR, NPR, M-IMR  253
References  255
Contents  ix  CHAPter 11  
Special Power Amplifiers  259
11.1  Doherty Amplifier  259
11.2  Chireix Amplifier  263
11.3  Kahn EER Amplifier  268
References  270
  CHAPter 12  
Bias Circuits  273
12.1  Introduction  273
12.2  Passive Circuit  273
12.3  Broadband Voltage Followers  276
12.4  Bias Supply  278
12.4.1  Gain Stabilization Versus Temperature  279
12.5  Distributed Pulsing  282
References  285
  CHAPter 13  
Thermal Design  287
13.1  Introduction  287
13.2  Device Life Versus Temperature  287
13.3  Junction Temperature Measurements  289
13.3.1  IR Microscopy  289
13.3.2  Liquid Crystals  291
13.3.3  Electrical Parameters  294
13.4  Mode of Operation  295
13.4.1  CW  296
13.4.2  Pulse  298
13.5  Heat Sinks  301
References  303
发表于 2017-6-30 12:21:04 | 显示全部楼层
已下载,谢谢
发表于 2017-6-30 13:33:02 | 显示全部楼层
Thanks for the share
发表于 2017-6-30 13:39:57 | 显示全部楼层
感谢分享。
发表于 2017-6-30 16:17:17 | 显示全部楼层
good to know it
发表于 2017-6-30 17:40:35 | 显示全部楼层
Good book THX LZ
发表于 2017-10-5 01:00:38 | 显示全部楼层
Practical Microwave Circuits_2014
发表于 2017-10-5 01:11:27 | 显示全部楼层
thx   
发表于 2017-10-8 19:43:15 | 显示全部楼层
多谢。。。。
发表于 2017-10-29 18:59:32 | 显示全部楼层
了解一下楼主的书
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

站长推荐 上一条 /2 下一条

小黑屋| 关于我们| 联系我们| 在线咨询| 隐私声明| EETOP 创芯网
( 京ICP备:10050787号 京公网安备:11010502037710 )

GMT+8, 2024-4-25 13:51 , Processed in 0.031006 second(s), 7 queries , Gzip On, Redis On.

eetop公众号 创芯大讲堂 创芯人才网
快速回复 返回顶部 返回列表