| 
 | 
 
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册  
 
×
 
 本帖最后由 eecsseudl 于 2013-4-29 09:56 编辑  
 
Intuitive Probability and Random Processes Using MATLAB_2006 
 
书非常清晰,有180多M,但不是扫描版,不喜勿下!!! 
目录: 
 
Contents 
Preface vii 
Introduction 1 
1.1 What Is Probability? 1 
1.2 Types of Probability Problems 3 
1.3 Probabilistic Modeling 4 
1.4 Analysis versus Computer Simulation 7 
1.5 Some Notes to the Reader 8 
References 9 
Problems 10 
Computer Simulation 13 
2.1 Introduction 13 
2.2 Summary 13 
2.3 Why Use Computer Simulation? 14 
2.4 Computer Simulation of Random Phenomena 17 
2.5 Determining Characteristics of Random Variables 18 
2.6 Real-World Example - Digital Communications 24 
References 26 
Problems 26 
2A Brief Introduction to MATLAB 31 
Basic Probability 37 
3.1 Introduction 37 
3.2 Summary 37 
3.3 Review of Set Theory 38 
3.4 Assigning and Determining Probabilities 43 
3.5 Properties of the Probability Function 48 
3.6 Probabilities for Continuous Sample Spaces 52 
3.7 Probabilities for Finite Sample Spaces - Equally Likely Outcomes . 54 
3.8 Combinatorics 55 
3.9 Binomial Probability Law 62 
xii CONTENTS 
3.10 Real-World Example - Quality Control 64 
References 66 
Problems 66 
4 Conditional Probability 73 
4.1 Introduction 73 
4.2 Summary 73 
4.3 Joint Events and the Conditional Probability 74 
4.4 Statistically Independent Events 83 
4.5 Bayes' Theorem 86 
4.6 Multiple Experiments 89 
4.7 Real-World Example - Cluster Recognition 97 
References 100 
Problems 100 
5 Discrete Random Variables 105 
5.1 Introduction 105 
5.2 Summary 105 
5.3 Definition of Discrete Random Variable 106 
5.4 Probability of Discrete Random Variables 108 
5.5 Important Probability Mass Functions Ill 
5.6 Approximation of Binomial PMF by Poisson PMF 113 
5.7 Transformation of Discrete Random Variables 115 
5.8 Cumulative Distribution Function 117 
5.9 Computer Simulation 122 
5.10 Real-World Example - Servicing Customers 124 
References 128 
Problems 128 
6 Expected Values for Discrete Random Variables 133 
6.1 Introduction 133 
6.2 Summary 133 
6.3 Determining Averages from the PMF 134 
6.4 Expected Values of Some Important Random Variables 137 
6.5 Expected Value for a Function of a Random Variable 140 
6.6 Variance and Moments of a Random Variable 143 
6.7 Characteristic Functions 147 
6.8 Estimating Means and Variances 153 
6.9 Real-World Example - Data Compression 155 
References 157 
Problems 158 
6A Derivation of E[g{X)] Formula 163 
6B MATLAB Code Used to Estimate Mean and Variance 165 
CONTENTS xiii 
7 Multiple Discrete Random Variables 167 
7.1 Introduction 167 
7.2 Summary 168 
7.3 Jointly Distributed Random Variables 169 
7.4 Marginal PMFs and CDFs 174 
7.5 Independence of Multiple Random Variables 178 
7.6 Transformations of Multiple Random Variables 181 
7.7 Expected Values 186 
7.8 Joint Moments 189 
7.9 Prediction of a Random Variable Outcome 192 
7.10 Joint Characteristic Functions 198 
7.11 Computer Simulation of Random Vectors 200 
7.12 Real-World Example - Assessing Health Risks 202 
References 204 
Problems 204 
7A Derivation of the Cauchy-Schwarz Inequality 213 
8 Conditional Probability Mass Functions 215 
8.1 Introduction 215 
8.2 Summary 216 
8.3 Conditional Probability Mass Function 217 
8.4 Joint, Conditional, and Marginal PMFs 220 
8.5 Simplifying Probability Calculations using Conditioning 225 
8.6 Mean of the Conditional PMF 229 
8.7 Computer Simulation Based on Conditioning 235 
8.8 Real-World Example - Modeling Human Learning 237 
References 240 
Problems 240 
9 Discrete iV-Dimensional Random Variables 247 
9.1 Introduction 247 
9.2 Summary 247 
9.3 Random Vectors and ProbabiUty Mass Functions 248 
9.4 Transformations 251 
9.5 Expected Values 255 
9.6 Joint Moments and the Characteristic Function 265 
9.7 Conditional Probability Mass Functions 266 
9.8 Computer Simulation of Random Vectors 269 
9.9 Real-World Example - Image Coding 272 
References 277 
Problems 277 
xiv CONTENTS 
10 Continuous Random Variables 285 
10.1 Introduction 285 
10.2 Summary 286 
10.3 Definition of a Continuous Random Variable 287 
10.4 The PDF and Its Properties 293 
10.5 Important PDFs 295 
10.6 Cumulative Distribution Functions 303 
10.7 Transformations 311 
10.8 Mixed Random Variables 317 
10.9 Computer Simulation 324 
10. lOReal-World Example - Setting Clipping Levels 328 
References 331 
Problems 331 
lOA Derivation of PDF of a Transformed Continuous Random Variable . 339 
lOB MATLAB Subprograms to Compute Q and Inverse Q Functions . . . 341 
11 Expected Values for Continuous Random Variables 343 
11.1 Introduction 343 
11.2 Summary 343 
11.3 Determining the Expected Value 344 
11.4 Expected Values for Important PDFs 349 
11.5 Expected Value for a Function of a Random Variable 351 
11.6 Variance and Moments 355 
11.7 Characteristic Functions 359 
11.8 Probability, Moments, and the Chebyshev Inequality 361 
11.9 Estimating the Mean and Variance 363 
U.lOReal-World Example-Critical Software Testing 364 
References 367 
Problems 367 
l lA Partial Proof of Expected Value of Function of Continuous Random 
Variable 375 
12 Multiple Continuous Random Variables 377 
12.1 Introduction 377 
12.2 Summary 378 
12.3 Jointly Distributed Random Variables 379 
12.4 Marginal PDFs and the Joint CDF 387 
12.5 Independence of Multiple Random Variables 392 
12.6 Transformations 394 
12.7 Expected Values 404 
12.8 Joint Moments 412 
12.9 Prediction of Random Variable Outcome 412 
12.10 Joint Characteristic Functions 414 
CONTENTS XV 
12.11 Computer Simulation 415 
12.12Real-World Example - Optical Character Recognition 419 
References 423 
Problems 423 
13 Conditional Probability Density Functions 433 
13.1 Introduction 433 
13.2 Summary 433 
13.3 Conditional PDF 434 
13.4 Joint, Conditional, and Marginal PDFs 440 
13.5 Simplifying Probability Calculations Using Conditioning 444 
13.6 Mean of Conditional PDF 446 
13.7 Computer Simulation of Jointly Continuous Random Variables . . . 447 
13.8 Real-World Example - Retirement Planning 449 
References 452 
Problems 452 
14 Continuous AT-Dimensional Random Variables 457 
14.1 Introduction 457 
14.2 Summary 457 
14.3 Random Vectors and PDFs 458 
14.4 Transformations 463 
14.5 Expected Values 465 
14.6 Joint Moments and the Characteristic Function 467 
14.7 Conditional PDFs 471 
14.8 Prediction of a Random Variable Outcome 471 
14.9 Computer Simulation of Gaussian Random Vectors 475 
14. lOReal-World Example - Signal Detection 476 
References 479 
Problems 479 
15 Probability and Moment Approximations Using Limit Theorems 485 
15.1 Introduction 485 
15.2 Summary 486 
15.3 Convergence and Approximation of a Sum 486 
15.4 Law of Large Numbers 487 
15.5 Central Limit Theorem 492 
15.6 Real-World Example - Opinion Polling 503 
References 506 
Problems 507 
15A MATLAB Program to Compute Repeated Convolution of PDFs . . . 511 
15B Proof of Central Limit Theorem 513 
xvi CONTENTS 
16 Basic Random Processes 515 
16.1 Introduction 515 
16.2 Summary 516 
16.3 What Is a Random Process? 517 
16.4 Types of Random Processes 520 
16.5 The Important Property of Stationarity 523 
16.6 Some More Examples 528 
16.7 Joint Moments 533 
16.8 Real-World Example - Statistical Data Analysis 538 
References 542 
Problems 542 
17 Wide Sense Stationary Random Processes 547 
17.1 Introduction 547 
17.2 Summary 548 
17.3 Definition of WSS Random Process 549 
17.4 Autocorrelation Sequence 552 
17.5 Ergodicity and Temporal Averages 562 
17.6 The Power Spectral Density 567 
17.7 Estimation of the ACS and PSD 576 
17.8 Continuous-Time WSS Random Processes 580 
17.9 Real-World Example - Random Vibration Testing 586 
References 589 
Problems 590 
18 Linear Systems and Wide Sense Stationary Random Processes 597 
18.1 Introduction 597 
18.2 Summary 598 
18.3 Random Process at Output of Linear System 598 
18.4 Interpretation of the PSD 607 
18.5 Wiener Filtering 609 
18.6 Continuous-Time Definitions and Formulas 623 
18.7 Real-World Example - Speech Synthesis 626 
References 630 
Problems 631 
18A Solution for Infinite Length Predictor 637 
19 Multiple Wide Sense Stationary Random Processes 641 
19.1 Introduction 641 
19.2 Summary 642 
19.3 Jointly Distributed WSS Random Processes 642 
19.4 The Cross-Power Spectral Density 647 
19.5 Transformations of Multiple Random Processes 652 
CONTENTS xvii 
19.6 Continuous-Time Definitions and Formulas 657 
19.7 Cross-Correlation Sequence Estimation 661 
19.8 Real-World Example - Brain Physiology Research 663 
References 667 
Problems 667 
20 Gaussian Random Processes 673 
20.1 Introduction 673 
20.2 Summary 675 
20.3 Definition of the Gaussian Random Process 676 
20.4 Linear Transformations 681 
20.5 Nonlinear Transformations 683 
20.6 Continuous-Time Definitions and Formulas 686 
20.7 Special Continuous-Time Gaussian Random Processes 689 
20.8 Computer Simulation 696 
20.9 Real-World Example - Estimating Fish Populations 698 
References 701 
Problems 702 
20A MATLAB Listing for Figure 20.2 709 
21 Poisson Random Processes 711 
21.1 Introduction 711 
21.2 Summary 713 
21.3 Derivation of Poisson Counting Random Process 714 
21.4 Interarrival Times 718 
21.5 Arrival Times 721 
21.6 Compound Poisson Random Process 723 
21.7 Computer Simulation 727 
21.8 Real-World Example - Automobile Traffic Signal Planning 728 
References 732 
Problems 732 
21A Joint PDF for Interarrival Times 737 
22 Markov Chains 739 
22.1 Introduction 739 
22.2 Summary 744 
22.3 Definitions 744 
22.4 Computation of State Probabilities 748 
22.5 Ergodic Markov Chains 756 
22.6 Further Steady-State Characteristics 759 
22.7 iiT-State Markov Chains 762 
22.8 Computer Simulation 764 
22.9 Real-World Example - Strange Markov Chain Dynamics 765 
xviii CONTENTS 
References 767 
Problems 767 
22A Solving for the Stationary PMF 775 
A Glossary of Symbols and Abbrevations 777 
B Assorted Math Facts and Formulas 783 
B.l Proof by Induction 783 
B.2 Trigonometry 784 
B.3 Limits 784 
B.4 Sums 785 
B.5 Calculus 786 
C Linear and Matrix Algebra 789 
C.l Definitions 789 
C.2 Special Matrices 791 
C.3 Matrix Manipulation and Formulas 792 
C.4 Some Properties of PD (PSD) Matrices 793 
C.5 Eigendecomposition of Matrices 793 
D Summary of Signals, Linear Transforms, and Linear Systems 795 
 
[ 本帖最后由 wodeccbp 于 2009-7-10 18:51 编辑 ] 
 
 
 
 
 
 
 |   
 
 
 
 |